4
Календарь конференций
  • 22 – 25 августа

    Проектно-аналитическая сессия по проблемам интеграции Евразийского экономического союза "Горизонты ЕАЭС"

  • 10 – 13 октября

    Всероссийская научная конференция и X молодежная школа «Возобновляемые источники энергии»

  • 14 октября

    Международная конференция студентов, аспирантов и молодых ученых «Эволюция права-2016»

  • 17 – 19 октября

    Ассамблея «Педагог XXI века» с международным участием

  • 18 – 20 октября

    Всероссийская научная конференция Геохимия ландшафтов (к 100-летию А.И. Перельмана)

  • 25 – 28 октября

    Всероссийская научная конференция «Международный год карт в России: объединяя пространство и время»

  • 27 октября

    3-й научно-практическая конференция студентов, аспирантов и молодых ученых «Эффективное управление» памяти заслуженного профессора Московского университета М.И. Панова

  • 31 октября – 3 ноября

    Международная научная конференция, приуроченная к 110-летию со дня рождения академика А.Н. Тихонова «Современные проблемы математической физики и вычислительной математики»

  • 31 октября – 3 ноября

    Международная научная конференция, приуроченная к 110-летию со дня рождения академика А.Н. Тихонова «Современные проблемы математической физики и вычислительной математики»

  • 22 – 25 ноября

    Совместная XVII Международная научно-практическая конференция и XI Международная научно-практическая конференция "Кутафинские чтения" «Обеспечение прав и свобод личности в современном мире»

  • 28 – 29 ноября

    Международная научная конференция «Словенский язык, литература и культура в славянском и европейском контексте»

Все конференции
Наука в МГУ

Общеуниверситетские проекты и мероприятия
Тестирование иностранных граждан в МГУ
Мероприятия для школьников и учителей
«Университет без границ»

Суперкомпьютер «Ломоносов»

Суперкомпьютер «Ломоносов», установленный в Московском университете в 2009 году, относится к уникальным системам высшего диапазона производительности. В настоящее время он содержит 6654 вычислительных узла, более 94000 процессорных ядер, обладает пиковой производительностью 1,37 Пфлоп/с. Реальная производительность системы на тесте Linpack равна 674 Тфлоп/с, что позволило ему занять в июне 2011 года 13–ое место в списке Top500 самых мощных компьютеров мира.

Впервые столь мощную вычислительную систему удалось разместить на площади всего 252 квадратных метра: по вычислительной плотности «Ломоносов» сегодня не имеет себе равных в мире, потребляя не более 2,8 МВт электроэнергии. Однако помимо высокой плотности и оптимального энергопотребления вычислитель такого масштаба должен обеспечивать высокую скорость решения реальных прикладных задач. Для этого в суперкомпьютере используется 6 видов вычислительных узлов и процессоры с различной архитектурой, а также специальные сети, что позволяет получать высокую производительность максимально широкого спектра приложений.

Появление суперкомпьютера «Ломоносов» в Московском университете закономерно: с момента появления первых отечественных компьютеров в середине 50–х годов прошлого столетия МГУ всегда был оснащен крупными вычислительными установками. В декабре 1956 года, практически сразу после создания Вычислительного центра МГУ, в нем была установлена ЭВМ «Стрела» — первая отечественная серийная машина. Экземпляр МГУ имел серийный номер 4, что говорит о том исключительно важном значении, которое придавало Московскому университету Правительство страны в развитии передовых вычислительных технологий.

В конце 50–х годов в Вычислительном центре МГУ была спроектирована и запущена в эксплуатацию ЭВМ «Сетунь» — первая в мире вычислительная система, основанная не на двоичной, а на троичной системе счисления. Позже данная машина была запущена в серийное производство.

Одно из самых почетных мест в истории отечественной вычислительной техники по праву принадлежит машине БЭСМ–6. Её разработка была завершена в 1967 году, на следующий год она была запущена в серию, и тогда же одним из первых в Советском Союзе ее получает Вычислительный центр МГУ. Всего было выпущено 355 машин, а экземпляр Московского университета имел порядковый номер 13. Эта машина оказалась исключительно удачной и востребованной, к 1979 году в МГУ работало уже четыре экземпляра БЭСМ–6.

Начало современного этапа развития вычислительной техники в МГУ, которое связано с использованием параллельных вычислений и суперкомпьютерных технологий, было положено в 1999 году. Именно в это время был самостоятельно собран, отлажен и запущен в эксплуатацию первый вычислительный кластер, объединивший высокоскоростной сетью 12 двухпроцессорных компьютеров в единую параллельную вычислительную систему.

В настоящее время суперкомпьютерный комплекс Московского университета является крупнейшим суперкомпьютерным центром России, а флагман суперкомпьютерного комплекса — суперкомпьютер «Ломоносов», безусловно, входит в число наиболее значимых суперкомпьютерных установок мира. С 2000 года производительность суперкомпьютеров комплекса выросла почти в тридцать тысяч раз.

На сегодняшний день ядром суперкомпьютерного комплекса МГУ являются: cуперкомпьютер «Ломоносов» с пиковой производительностью 1,3 Пфлоп/с, суперкомпьютер «Чебышев» с пиковой производительностью 60 Тфлоп/с и суперкомпьютер IBM Blue–Gene/P с пиковой производительностью 27 Тфлоп/с. Суперкомпьютерный комплекс активно развивается, а в его состав включаются вычислительные системы, построенные на новых принципах. Среди них — использование графических процессоров. Сначала это нашло отражение в экспериментальной установке от Hewlett–Packard «ГрафИТ!», объединившей 48 графических процессоров в рамках одной стойки, а затем было реализовано в полном масштабе в виде специального раздела суперкомпьютера «Ломоносов», содержащего 1554 графических процессора от NVidia.

Суперкомпьютер «Ломоносов» — уникальный универсальный инструмент, помогающий ученым практически всех специальностей получать результаты мирового уровня. Возможностями суперкомпьютерного комплекса Московского университета, основу которого составляет суперкомпьютер «Ломоносов», сегодня пользуются более 500 научных групп, представляющих все основные подразделения МГУ, многие институты РАН и другие научные учреждения России.

Среди направлений фундаментальных исследований, требующих использования суперкомпьютерных вычислительных мощностей, — магнитная гидродинамика, гидро– и аэродинамика, квантовая химия, сейсмика, компьютерное моделирование лекарств, геология и науки о материалах, фундаментальные основы нанотехнологий, инженерные науки, криптография и многое другое.

С помощью суперкомпьютера «Ломоносов», который принимает на себя основную вычислительную нагрузку в рамках суперкомпьютерного комплекса МГУ, уже получены уникальные результаты в разных областях науки, например, в исследовании механизмов генерации шума в турбулентной среде или же в создании новых компьютерных методов проектирования лекарственных препаратов.

Совместной группой мехмата МГУ и Института прикладной математики РАН получены важные результаты по численному моделированию формирования и развития концевых вихрей на сверхзвуковых режимах. Эта задача требует огромных вычислительных ресурсов.

Повышение эффективности нефтегазовой отрасли напрямую зависит от мощности применяемых высокопроизводительных вычислительных систем. Это верно как на этапе поисков и разведки месторождений горючих полезных ископаемых, так и на этапе их освоения и эксплуатации. В процессе извлечения информации из сейсмических данных необходимо подавить волны–помехи, оценить глубинно–скоростную модель среды и построить глубинное изображение участка земной коры в районе наблюдений. Особая проблема связана с тем, что объём данных на одном месторождении может достигать десятков и сотен терабайт, что диктует необходимость применения самых мощных суперкомпьютеров.

В настоящее время на суперкомпьютере «Ломоносов» решается ряд важных задач обработки сейсмических данных. В частности, при помощи высокоэффективного метода 3D SRME осуществляется подавление волн–помех, обусловленных переотражением от свободной поверхности в нижнее полупространство, проводится построение глубинного изображения среды при помощи метода миграции в обратном времени — каждый расчет каждой из этих задач требует несколько тысяч процессорных ядер суперкомпьютера «Ломоносов».

Перспективные результаты получены группой ученых ИПМ РАН по моделированию режимов охлаждения современных процессоров. Показано, что радиаторы рассматриваемой конструкции должны иметь не менее 25 ребер для предохранения процессора от перегрева. Оптимальной является конфигурация с количеством ребер более 757–100, при которой процессор с потребляемой мощностью 65 Вт ни в какорежиме не нагревается выше 70°С.

Ввод в строй суперкомпьютера «Ломоносов» позволил решить ряд важных задач для ведущих промышленных отраслей России — аэрокосмической (РКК «Энергия» им. С.П. Королева) и атомной (ОКБМ им. И.И. Африкантова). Для нужд РКК «Энергия» с помощью «Ломоносова» были проведены расчеты обтекания перспективного космического корабля «Русь» при торможении в атмосфере Земли и посадки на ее поверхность. На «Ломоносове» также была решена задача о массотеплообмене в устройстве сепарации окислов натрия в первом контуре перспективного ядерного реактора, разрабатываемого ОКБМ им. И.И. Африкантова.

За последние годы суперкомпьютерные технологии в Московском университете сформировались в мощный научно-образовательный комплекс, отражающий приоритетное внимание государства к использованию суперкомпьютерных технологий для инновационного развития России. В декабре 2008 года по инициативе МГУ и университетов Нижнего Новгорода, Тюменского и Южно–Уральского — создан Суперкомпьютерный консорциум университетов России (hpc-russia.ru). В настоящее время Консорциум объединяет более 50 постоянных и ассоциированных членов, в числе которых крупнейшие университеты страны.

Консорциум стал основным исполнителем проекта «Суперкомпьютерное образование» Комиссии при Президенте РФ по модернизации и технологическому развитию экономики России. Головной исполнитель проекта — Московский университет (hpc-education.ru).

Реалии сегодняшнего дня требуют изменения основ образования в области вычислительных наук: во главу угла должны быть поставлены идеи параллельной обработки данных. Компьютерный мир изменился, из последовательного он превратился в параллельный, и именно этот факт нужно отразить в современной системе подготовки специалистов. Важно и то, что в силу универсальности вычислительных технологий подобные изменения должны затронуть практически все естественнонаучные и инженерные специальности, что определяет масштабность проекта.

В Московском университете сформирован Научно–образовательный центр «Суперкомпьютерные технологии», объединяющий представителей различных подразделений МГУ для эффективного использования потенциала суперкомпьютерных технологий в подготовке высококвалифицированных специалистов и поддержке фундаментальных научных исследований. НОЦ «Суперкомпьютерные технологии» МГУ стал головным в системе научно–образовательных центров, созданных в различных федеральных округах России в рамках проекта «Суперкомпьютерное образование», координируя их деятельность по распространению и развитию суперкомпьютерных технологий в различных регионах страны.