18
Календарь конференций
  • 13 декабря – 13 февраля

    XXIX Московская открытая олимпиада школьников по геологии 2021-2022 года

  • 15 декабря – 5 апреля

    Универсиада «Ломоносов» по направлению подготовки «Химия, физика и механика материалов» Факультета наук о материалах МГУ

  • 20 декабря – 20 марта

    Международный архитектурный конкурс The Ideal Village

  • 27 января – 1 февраля

    Всероссийская зимняя школа научного перевода для студентов социально-гуманитарного профиля «Перевод в науке – наука в переводе»

  • 27 января – 1 февраля

    Всероссийская зимняя школа научного перевода для студентов социально-гуманитарного профиля «Перевод в науке – наука в переводе»

  • 4 – 5 февраля

    Всероссийская научная конференция «Философия перед лицом новых цивилизационных вызовов», приуроченная к 80-летнему юбилею воссоздания философского факультета в структуре Московского университета.

  • 4 февраля

    VII Зимняя научная школа-конференция по механике композитов имени Б. Е. Победри

  • 15 октября – 9 февраля

    Международный конкурс на лучшую научную работу «Аrs Sacra Audit»

  • 13 декабря – 13 февраля

    XXIX Московская открытая олимпиада школьников по геологии 2021-2022 года

  • 21 – 22 февраля

    XVI Международная научная конференция «Сорокинские чтения» Искусственный интеллект и общественное развитие: новые возможности и преграды

  • 2 апреля

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 15 декабря – 5 апреля

    Универсиада «Ломоносов» по направлению подготовки «Химия, физика и механика материалов» Факультета наук о материалах МГУ

  • 26 – 27 мая

    «Уголовное право в системе межотраслевых связей: проблемы теории и правоприменения»

Все конференции
27/12/21

Биологи МГУ предложили новый взгляд на роль врожденного иммунитета в жизни и смерти

Сотрудники НИИ ФХБ имени А.Н. Белозерского МГУ предложили концепцию, которая позволяет по-новому взглянуть на работу системы врожденного иммунитета.

Хорошо известно, что активация врожденного иммунитета в ответ на вирусные и бактериальные инфекции, а также на массивные травмы (в частности, при хирургическом вмешательстве), ишемические и токсические поражения часто ведет к тяжелому течению заболеваний и к смерти. Традиционно принято считать, что это результат ошибочной гиперстимуляции защитных реакций, который служит эволюционной расплатой за высокую эффективность иммунной системы. Основываясь на многочисленных наблюдениях, авторы предположили, что такие опасные свойства системы врожденного иммунитета являются следствием закрепленной в эволюции альтруистической суицидальной стратегии, защищающей популяцию от распространения эпидемий и опасных патологий.

Убедительные свидетельства в пользу этой гипотезы следуют из основных механизмов работы врожденного иммунитета. Эта система располагает относительно небольшим числом рецепторов, которые распознают общие черты, присущие большим группам патогенов, а также компонентам хозяйских клеток. Предполагалось, что эти компоненты, которые получили название «паттернов, связанных с повреждением», damage-associated molecular patterns, DAMPs, выходят в кровь, где встречаются с иммунными клетками, исключительно из поврежденных клеток. Они могут служить для привлечения иммунных клеток и выработки медиаторов воспаления в очагах повреждения тканей, способствуя заживлению ран и восстановлению тканей.

Однако постепенно стали накапливаться данные о том, что многие DAMPs активно выбрасываются из неповрежденных клеток при воспалительной активации. Наиболее ярким примером могут служить ядерные белки HMGB1 и CIRP. В норме они участвуют в регуляции репликации и транскрипции, но, оказавшись вне клетки, служат мощными активаторами иммунного ответа. Активное высвобождение этих белков требует их посттрансляционной модификации, что позволяет выйти в цитоплазму, а далее выброс происходит благодаря экзоцитозу секреторных лизосом.

Оказалось, что эти и другие DAMPs критически важны для развития многих патологий. Так например, мыши с нокаутом гена CIRP выживают при летальном сепсисе. Введение антител, перехватывающих некоторые DAMPs или блокирующих их рецепторы, предотвращает развитие сепсиса, асептическиого системного воспаления, ишемических поражений и т.д.

Эти наблюдения очень трудно объяснить с точки зрения защитной функции иммунитета, но они хорошо согласуются с гипотезой запрограммированного самоубийства. Надо сказать, что принципиально сходная стратегия хорошо известна для бактерий, где носит название abortive infection system. Такие системы обычно состоят всего из двух белков, которые вызывают самоубийство бактерий при заражении вирусом. Экспериментально показано, что бактерии, имеющие такую систему, выигрывают конкуренцию у лишенных ее мутантов при вирусной инфекции.

Представления об альтруистической запрограммированной смерти отдельных организмов во благо родственного сообщества или популяции был сформулированы Владимиром Петровичем Скулачевым более двух десятилетий назад. Эта закрепленная в эволюции стратегия получила название «феноптоз». Помимо острого феноптоза, который хорошо иллюстрируется гибелью больных COVID-19 от «цитокинового шторма» и тромбозов, Владимир Скулачев предположил существование «медленного фенотоза», который эквивалентен запрограммированному старению.

В полном согласии с этой гипотезой Борис Черняк и другие приводят убедительные примеры причинно-следственной связи между активацией врожденного иммунитета и старением. Так, многолетние эксперименты по селекции долгоживущих мух дрозофил привели к отбору мух с подавленной иммунной системой. Похожий эксперимент, по-видимому, был поставлен в природе в ходе эволюции летучих мышей. У этих животных, благодаря точечной мутации одного гена, существенно снижен антивирусный иммунитет. Летучие мыши пошли по пути мирного сосуществования с множеством вирусов, что сделало их резервуаром крайне опасных патогенов.

Возможно, именно благодаря ослаблению иммунитета, летучие мыши живут значительно дольше большинства животных сходного размера — 10-20 лет, а некоторые виды до 40 лет. Предполагается, что снижение иммунитета в этом случае компенсируется очень высокой температурой тела, которая возникает при полете. Не исключено, что подобная стратегия реализуется также у некоторых птиц (альбатросы, крупные попугаи), которые живут значительно дольше, чем их нелетающие сородичи — 100 лет и более.

«Конечно, печально сознавать, что мы несем в себе программу, которая может нас убить и, одновременно, служит драйвером старения. Но есть и хорошие новости! Если мы теперь знаем эту программу в лицо, то можем попытаться разработать средства, которые бы ее ослабляли. В конце концов у нас есть еще и адаптивный иммунитет, антибиотики и антивирусные препараты. Одним из прототипов «лекарства против феноптоза» могут стать митохондриально-направленные антиоксиданты, такие как SkQ1, разработанный в нашем Институте под руководством В.П. Скулачева. Наши эксперименты и опыты наших коллег показали, что это соединение подавляет многие реакции врожденного иммунитета. По-видимому, именно эта активность определяет выраженное терапевтическое действие препарата при самых различных патологиях. В отличие от множества противовоспалительных средств, SkQ1 не имеет выраженных побочных эффектов. Можно предполагать, что именно благодаря подавлению врожденного иммунитета, SkQ1 существенно повышает среднюю продолжительность жизни лабораторных животных. Хочется верить, что разработка и применение подобных препаратов может сделать нашу жизнь длиннее и безопасней», — говорит заведующий лабораторией биоэнергетике клетки НИИ ФХБ им. А.Н. Белозерского МГУ Борис Черняк.

Работа Бориса Черняка, Константина Лямзаева и Армена Мулкиджаняна была поддержана грантом РНФ 2017-2021гг и опубликована в International Journal of Molecular Sciences.

годнауки.рф

https://xn--80afdrjqf7b.xn--p1ai/news/12151/