20
Календарь конференций
  • 13 – 14 декабря

    Международная конференция “Деятельностный подход к образованию в цифровом обществе” International Conference “Activity learning theory to education of information-oriented society”

  • 14 декабря

    Скрытые смыслы, или грамматика нереального - 2

  • 17 – 18 декабря

    Международная научно-практическая конференция «Личность в эпоху перемен: mobilis in mobili»

  • 18 – 19 декабря

    VI Международная научная конференция «Русская литература XX–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 30 января – 2 февраля

    Международная конференция ИнтерКарто/ИнтерГИС-25 «Геоинформационное обеспечение устойчивого развития территорий»

  • 30 января – 2 февраля

    Международная конференция ИнтерКарто/ИнтерГИС-25 «Геоинформационное обеспечение устойчивого развития территорий»

  • 20 – 23 марта

    VI Международный конгресс исследователей русского языка «Русский язык: исторические судьбы и современность»

  • 6 апреля

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 8 – 12 апреля

    Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2019»

  • 13 – 15 мая

    международная научно-техническая конференция «Методы фотограмметрии и компьютерного зрения для видеонаблюдения, биометрии и медицинских приложений»

  • 16 – 19 мая

    IV Международной научной конференции «Язык, книга и традиционная культура позднего русского средневековья в науке, музейной и библиотечной работе»

Все конференции
Конкурсы на замещение должностей научных и педагогических работников
«Университет без границ»
Олимпиады школьников и универсиады в МГУ
Мероприятия для школьников и учителей
Гранты Президента РФ
Единая поисковая система по зарубежным базам данных
Программы дополни-
тельного образования

Спинтроника и магноника в одном флаконе

Ученые из МГУ и ИОФ РАН приняли участие в «настройке» магнитного материала — феррита висмута — под нужды самых динамичных областей современной электроники

Одна из самых интересных задач, которые решает современная электроника — это создание очень быстрых устройств без высоких потерь энергии в виде тепла. Считается, что в перспективе нас ждут аккумуляторы без химических реакций, которые переводят электричество в энергию постоянного магнита и обратно, магниторезистивная память с нулевым энергопотреблением и почти «вечным» ресурсом, более совершенные, чем сейчас, магнитные головки записи в жестких дисках, а также оптические устройства нанометровых масштабов. Ключом к инновациям подобного типа является управление спинами частиц в функциональных материалах. Переключая спины (точнее, их направления), можно менять магнитное или электрическое состояние вещества. А главное — осуществляется переключение спинов очень просто, быстро и без потерь энергии1. Из идеи со спинами родились два прорывных направления в электронике — спинтроника (в ней используется замена «физического» тока электронов на «ток» их спинов) и магноника (изучает спиновые волны2). На принципах спинтроники или магноники будут основаны все вышеперечисленные устройства.

Функциональные материалы для этих областей в последние годы вызывают высокий интерес — примерно каждые пять лет количество им посвященных публикаций удваивается. Стоит отметить, что у истоков направления еще в 1950-1960-х годах стояли советские ученые. Так Л.Д. Ландау и Е.М. Лифшиц сформулировали необходимые условия магнитоэлектрического эффекта — т.е. эффекта, при котором электрического поле вызывает в материале намагниченность, а магнитное поле — электрическую поляризацию. В 1959 году ученик Ландау И.Е. Дзялошинский указал на оксид хрома (Cr2O3) как на потенциальный магнитоэлектрик, а через год соответствующий эффект в этом веществе (он проявляется ниже 34°С) был обнаружен Д.Н. Астровым.

Ренессанс интереса к материалам с магнитоэлектрическим эффектом при более высоких температурах (это важно для практических приложений) произошел в 1990-2000-х годах. Необычным свойствам пленок одного из таких веществ – феррита висмута (BiFeO3) посвящена недавно вышедшая в Nature Materials статья (Nature Materials, 12, 641–646), где соавторами были российские специалисты из МГУ и ИОФ РАН.

Ученым удалось показать, что под действием механических напряжений магнитные и электрические свойства BiFeO3 меняются таким образом, что он становится очень перспективным кандидатом для устройств спинтроники и магноники. Никогда еще электричество, магнетизм и обычная механика не переплетались так близко друг с другом.

Феррит висмута обладает интересной особенностью — под влиянием внутренних электрических полей в нем образуются так называемые спиновые циклоиды — структуры, спины в которых образуют макроскопические спирали. «Представьте, что вместо того, чтобы физически изгибать кристалл, мы «изогнули» направления магнитных моментов атомов (спинов) в нем таким образом, что они образовали спираль, — поясняет доцент физического факультета МГУ Александр Пятаков, принимавший участие в исследовании. — «Такая спираль подобна взведенной пружине, но это не механическая пружина, а магнитная».

Магнитные «пружины» обладают новыми свойствами, не присущими однородно намагниченному веществу. Помимо реакции на магнитное поле, они приобретают чувствительность к электрическому полю и механическим напряжениям.

«Практическая польза от этого — перестраивая форму "пружин" с помощью напряжений, возникающих в пленках феррита висмута, можно изменять магнетосопротивление спиновых клапанов (сэндвичеобразные структуры, используемые в жестких дисках и спинтронике. — Ред.), а также влиять на условия распространения спиновых волн и микроволновые свойства материала (это уже из области магноники. — Ред.)», — говорит Пятаков.

Основной эксперимент был проведен французскими учеными, которые обратились к своим российским коллегам за помощью в теоретическом объяснении подобных перестроек: они почему-то происходили только в тонких пленках, но не в крупном монокристалле. Теория же четко указала на причину — «пружины» в тонких пленках и монокристалле различны по своей структуре, — и обосновала такие различия. «С Анатолием Константиновичем Звездиным из ИОФ РАН мы это направление развивали давно и были готовы к тем результатам, которые прислали французы, — рассказывает Пятаков. — Мы посмотрели на них и сказали: а, так это то, что нужно!».

На физическом факультете МГУ материалы на основе феррита висмута исследуют не только в теории, но и в эксперименте — ранее в проблемной лаборатории магнетизма их изучали с помощью сильных магнитных полей. «Опубликованная в «Письмах в ЖЭТФ» на эту тему статья — одна из наиболее цитируемых в истории журнала», — отмечает Александр Пятаков.

к.х.н. Иван Охапкин,
Управление инновационной политики и международных научных связей

1 Приложением магнитного и электрического полей, механического напряжения
2 Спиновые волны — это распространяющиеся во времени возмущения магнитных свойств материала, а по сути — направлений спинов. Особенность спиновых волн — их длина на порядки меньше, чем световых волн при той же частоте.