6
Календарь конференций
  • 12 – 16 ноября

    International Conference for Students and Young Scientists «Carpe Scientiam»

  • 16 – 18 ноября

    XVII конференция «Актуальные проблемы неорганической химии: низкоразмерные функциональные материалы»

  • 21 – 23 ноября

    IX Международная научная конференция «Иберо-романистика в современном мире: научная парадигма и актуальные задачи»

  • 29 ноября – 2 декабря

    VIII Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 30 ноября

    VI Международная научная конференция португалистов «Камоэнсовские чтения»

  • 29 ноября – 2 декабря

    VIII Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 5 – 8 декабря

    ХLIV Международная научная конференция Общества по изучению культуры США «Америка и Европа: формы культурного взаимодействия – America and Europe: Forms of Cultural Interaction»

  • 6 декабря

    Международная научная конференция Хачатуровские чтения -2018 «Современные тренды экологически устойчивого развития"

  • 30 января – 2 февраля

    Международная конференция ИнтерКарто/ИнтерГИС-25 «Геоинформационное обеспечение устойчивого развития территорий»

  • 30 января – 2 февраля

    Международная конференция ИнтерКарто/ИнтерГИС-25 «Геоинформационное обеспечение устойчивого развития территорий»

  • 20 – 23 марта

    VI Международный конгресс исследователей русского языка «Русский язык: исторические судьбы и современность»

  • 2 – 5 июля

    ХVI Европейский психологический конгресс

Все конференции

Главные темы

27/10
Детектор Борексино видит Солнце в режиме реального времени. Изображение: INFN
Ученые международной коллаборации Борексино с участием сотрудников МГУ представили результаты 10 лет нейтринных исследований в эксперименте Борексино. Результаты наблюдений на детекторе подтверждают теоретические предсказания Стандартной солнечной модели и предоставляют более глубокое понимание термоядерных процессов, протекающих внутри Солнца.
Инженер запускает пробную установку. Разряд плазмы, проходящий близ обрабатываемой поверхности, срезает неровности. Срезанные микрочастицы сдуваются потоком сжатого воздуха.
Технологический стартап, созданный аспирантами и молодыми учеными МГУ, получил грант от Фонда содействия инновациям. В рамках проекта, над которым работали представители физического и химического факультетов, создано устройство для плазменной обработки поверхности площадных материалов емкостным высокочастотным разрядом (плазмой) при атмосферном давлении. У команды уже есть заказчики в России и в Германии.
Экспериментальная установка для моделирования сферического течения Куэтта
Ученые из Института механики МГУ экспериментально выяснили, как случайные колебания скорости вращения, или шумы, влияют на количество вихрей в сферическом течении Куэтта. Оказалось, что между уровнем шума и режимом течения существует сложная нелинейная связь. Знания об этом явлении помогут строить более точные модели природных течений, в том числе циркуляции атмосферы Земли.
31/07
Физики МГУ обнаружили в редкоземельном соединении два сложных магнетизма
Сотрудники НИИЯФ МГУ совместно с коллегами из Российской академии наук синтезировали германид диспрозия в метастабильном состоянии и выяснили, что в этом соединении сосуществуют два явления сложного магнетизма. Изучение свойств химических соединений носит фундаментальный характер и в дальнейшем может привести к открытию новых перспективных материалов.
Особенности оптических свойств дисульфидных нанотрубок
Сотрудники факультета наук о материалах МГУ в тесном сотрудничестве с учёными физического факультета МГУ и зарубежными коллегами показали наличие уникального взаимодействия света с веществом в суспензиях и тонкопленочных самосборках нанотрубок дисульфида вольфрама, которые являются одними из самых известных и «старейших» аналогов всемирно известных углеродных нанотрубок.
03/07
Схема экспериментальной установки, демонстрирующей эффект квантового вампира для квазитепловых состояний света. Источник — журнал Optica
Ученые с кафедры квантовой электроники физического факультета МГУ имени М.В.Ломоносова проверили новый квантовый эффект под названием «квантовый вампир». Его суть заключается в том, что если попытаться уничтожить фотон в какой-то одной части пучка света, то он равномерно высосется изо всех его частей, и таким образом не возникнет никакой тени.
Схематичное изображение потока. Источник: А. Осипцов
Сотрудники Научно-исследовательского института механики МГУ совместно с коллегой из Центра новых космических технологий МАИ описали поведение свободной жидкой пленки в открытом космосе. Результаты исследования опубликованы в журнале Physics of Fluids.
05/04
Подъёмная и гравитационная силы, действующие на частицу в микроканале. Источник: Александр Дубов (соавтор исследования).
Группа учёных из МГУ имени М.В.Ломоносова, Института физической химии и электрохимии имени А.Н. Фрумкина РАН и Юлихского исследовательского центра описала механизм возникновения инерционной подъёмной силы, действующей на частицы произвольного размера в микроканалах. Ранее подобные расчёты были возможны лишь для частных случаев. Более точное описание позволит использовать эти процессы для сортировки частиц. Исследование опубликовано в Journal of Fluid Mechanics.
31/03
Ученые доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде
Российские физики экспериментально доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде. Этот эффект можно использовать для создания перестраиваемых высокоэффективных источников лазерного излучения высокой пиковой мощности, что может быть востребовано при лечении заболеваний глаз. Работа выполнена в рамках гранта Президентской программы исследовательских проектов, реализуемой Российским научным фондом (РНФ), и опубликована в журнале Physical Review A.
14/03
Иллюстрация комбинации цветов во времени в пикселе дисплея. Источник: Александр Емельяненко
Сотрудники физического факультета МГУ совместно с иностранными коллегами разработали новый жидкокристаллический материал. Он обладает большим потенциалом в качестве основы для создания дисплеев — ярче, быстрее, экономичнее и с лучшим разрешением.