7
Календарь конференций
  • 29 ноября – 3 декабря

    XII Международная научная конференция «Интеллектуальные системы и компьютерные науки»

  • 1 – 4 декабря

    XLVII Международная конференция Общества по изучению культуры США «Преодоление: выработка идеалов и их отображение в культуре США \ Overcoming: Cultivating Ideals through Overcoming Barriers in American culture»

  • 3 декабря

    III Межвузовская студенческая конференция «Региональные варианты массовой культуры»

  • 29 ноября – 3 декабря

    XII Международная научная конференция «Интеллектуальные системы и компьютерные науки»

  • 10 декабря

    Международная студенческая конференция «История России и Германии: актуальные темы и обмен опытом между молодыми учёными» | Studentische Kolloquium «Deutsche und russische Geschichte: Aktuelle Themen und Erfahrungsaustausch zwischen jungen Historiker(inne

  • 10 декабря

    IV Научная конференция «Актуальные проблемы экранных и интерактивных медиа». Искусственный интеллект и новые возможности экранных искусств и медиаиндустрии

  • 13 декабря – 13 февраля

    XXIX Московская открытая олимпиада школьников по геологии 2021-2022 года

  • 16 декабря

    Всероссийский уголовно-правовой форум молодых ученых имени М.Н. Гернета

  • 2 апреля

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

Все конференции
Филиал МГУ в г. Сарове

Конкурсы на замещение должностей научных и педагогических работников
Единая поисковая система по зарубежным базам данных
Программы дополни-
тельного образования
ЗАПИСАТЬСЯ НА ВАКЦИНАЦИЮ
Проект «Вернадский»
«Университет без границ»

Главные темы

14/03
Иллюстрация комбинации цветов во времени в пикселе дисплея. Источник: Александр Емельяненко
Сотрудники физического факультета МГУ совместно с иностранными коллегами разработали новый жидкокристаллический материал. Он обладает большим потенциалом в качестве основы для создания дисплеев — ярче, быстрее, экономичнее и с лучшим разрешением.
29/01
Формирование гребенки в микрорезонаторе, связанном с оптическим волноводом. Художественная версия. Источник: Михаил Городецкий
Ученые физического факультета МГУ вместе с коллегами создали новую математическую модель, описывающую процесс рождения солитонов в оптических резонаторах. Понимание известных и предсказание новых эффектов при их образовании поможет физикам создавать точнейшие приборы для спектроскопии и универсальные оптические генераторы. Работа была опубликована в журнале Optics Express.
12/01
Структура классического ядерного волновода, состоящего из отражающих слоев A, C и запертого между ними прозрачного слоя B. Отражающая способность такой структуры показана красной линией и имеет вид колодца. Источник: Юрий Хайдуков
Сотрудники НИИЯФ МГУ с коллегами создали магнитный волновод, способный удерживать нейтроны в разных слоях. Исследование может найти применение в создании электронных устройств, работа которых основана не на заряде частиц-переносчиков, а на их квантовом состоянии. Статья опубликована в журнале Physical Review B.
09/01
Принцип работы сенсора на основе массивов пористых наноразмерных нитей кремния. Иллюстрацию учёных из МГУ вынесли на обложку журнала. Источник: Любовь Осминкина
Сотрудники физического факультета МГУ имени М.В. Ломоносова предложили использовать массивы пористых наноразмерных нитей кремния для высокочувствительных газовых датчиков. Такие датчики смогут определять содержание в воздухе молекул токсичных и нетоксичных газов при комнатной температуре. Результаты исследований были опубликованы в журнале Physica Status Solidi A: Applications and Materials Science.
20/12
Спутник
Проект «Ломоносов» — масштабный научно-образовательный космический проект Московского университета, направленный на изучение экстремальных астрофизических явлений. За время работы спутника сотрудники НИИЯФ МГУ с коллегами получили новые данные о многих малоизученных физических явлениях во Вселенной и в атмосфере Земли. Результаты исследований опубликованы в таких высокорейтинговых журналах, как Journal of Cosmology and Astroparticle Physics и Space Science Reviews.
14/12
В МГУ разработали и успешно протестировали квантовый телефон
Сотрудники физического факультета МГУ создали и протестировали квантовый телефон. Это устройство обеспечивает прямой квантовый канал обмена информации. Благодаря автоматическому симметричному распределению квантовых ключей, связь по квантовым телефонам получается абсолютно защищённой от прослушиваний и перехватов. Первый сеанс связи по университетской квантовой сети состоялся 13 декабря в лаборатории квантовых оптических технологий.
05/12
Схема эксперимента, использовавшаяся в ходе работы
На физическом факультете МГУ обнаружили эффект растяжения игольчатых алмазных кристаллитов под действием приложенного электрического поля. Возникающая при таком растяжении деформация приводит к изменению в спектрах люминесценции, что может быть использовано для создания датчиков электрического поля и других квантово-оптических устройств. Работа была опубликована в журнале Nano Letters.
24/11
Квантовый генератор случайных чисел, экспериментальная установка. Источник: кафедра квантовой оптики физфака МГУ
Группа ученых МГУ разработала и сконструировала компактный высокоскоростной квантовый генератор случайных чисел. Принцип его работы основан на регистрации квазиоднофотонного излучения матрицей SiPM (Silicon Photo-Multiplier). Этот подход позволяет надежно достичь пуассоновской статистики фотоотсчетов. Результаты исследования опубликованы в журнале Laser Physics Letters.
21/11
Интерферометр, разработанный в МГУ
Аспирантка физического факультета МГУ в составе международной коллаборации учёных разработала метод время-разрешенной спектроскопии, позволяющий изучать быстропротекающие процессы в образцах. Новый метод работает на основе анализа квантованного света, пропускаемого через исследуемый образец без использования фемтосекундных лазеров и сложных систем детектирования.
Схема датчика водорода. Источник: Александр Ильин/МГУ
Сотрудники физического факультета МГУ и их коллеги выявили механизм, позволяющий газовому датчику на основе нанокристаллических оксидов металлов работать при комнатной температуре. Это изобретение позволит более эффективно вести мониторинг среды на АЭС, а также на подводных лодках и космических кораблях. Об открытии сообщается в журнале ScientificReports.