20
Календарь конференций
  • 1 июня – 31 июля

    Виртуальный ботаник: отправь растения в онлайн!

  • 25 июня

    Страница вступительного испытания в магистратуру факультета журналистики МГУ имени М. В. Ломоносова по направлению: "Журналистика" для российских абитуриентов. 1 поток. Экзамен 25 июня 2021 года в 10:00

  • 1 июля

    Ежегодный вестник «Инновации в профильном естественнонаучном образовании: диалог между школой и ВУЗом»

  • 1 июня – 31 июля

    Виртуальный ботаник: отправь растения в онлайн!

  • 7 – 8 сентября

    Всероссийская научная конференция «Проблемы агрохимии и экологии – от плодородия к качеству почвы», посвященная 90-летию выдающегося деятеля науки, классика отечественной школы агрохимии, академика РАН Василия Григорьевича Минеева

  • 7 – 8 сентября

    VI Международная научно-практическая конференция «Инновационная экономика и менеджмент: методы и технологии»

  • 11 – 12 октября

    Научно-практическая конференция студентов, магистрантов и аспирантов II Молодежные Губеровские чтения «Юго-Восточная Азия: история и современность»

  • 17 – 18 ноября

    Всероссийская научная конференция с международным участием «Природная и антропогенная неоднородность почв и статистические методы ее изучения»

  • 10 декабря

    Международная конференция по общему языкознанию «Наследие трудов Ю.В. Рождественского в XXI веке» — к 95-летию со дня рождения Юрия Владимировича Рождественского (1926-1999)

Все конференции
Филиал МГУ в г. Сарове

Проект «Вернадский»
Конкурсы на замещение должностей научных и педагогических работников
Программы поддержки талантливой молодежи
Олимпиады школьников и универсиады в МГУ
Единая поисковая система по зарубежным базам данных
Гранты Президента РФ

Астрономы МГУ нашли источник космических нейтрино

Телескоп-робот «МАСТЕР-Таврида». Фото с камеры внешнего контроля
Телескоп-робот «МАСТЕР-Таврида». Фото с камеры внешнего контроля

Сотрудники ГАИШ МГУ в содружестве с Благовещенским государственным педагогическим и Иркутским государственным университетами обнаружили явление, которое позволяет установить источник нейтрино высоких энергий во Вселенной. Этим явлением оказалась сверхмассивная чёрная дыра, релятивистское жерло которой направлено в сторону Земли. Это ещё один шаг к пониманию того, как зарождалась Вселенная. Работа опубликована в журнале The Astrophysical Journal Letters.

Одно из ключевых направлений развития современной астрофизики — это исследование свойств материи при сверхвысоких энергиях, в сотни и тысячи раз превышающих возможности Большого адронного коллайдера. Такие «бесплатные ускорители» находятся во Вселенной. Однако из всех частиц сверхвысоких энергий путешествовать в космосе могут только нейтрино — элементарные частицы, не имеющие заряда и обладающие феноменальной проникающей способностью. Но детектировать их очень непросто. Чтобы обнаружить источники нейтрино высоких и сверхвысоких энергий, были построены уникальные установки на Южном полюсе (IceCube), в Средиземном море (ANTARES), на дне Байкала и в Баксанском ущелье в Приэльбрусье. Сами нейтрино были детектированы, но откуда они приходят, оставалось загадкой. 

Рассеяние света во льду или в воде, которые являются рабочим телом детекторов нейтрино, приводит к размытию квадрата ошибок. Обычно он составляет величину, сравнимую с квадратным градусом. И даже если считать только сверхмощные активные галактические ядра, стреляющие точно в Землю — блазары, — то и их в каждом квадрате ошибок будет в среднем несколько штук. Поэтому просто обнаружение блазаров в квадрате ошибок не является доказательством того, что именно они источник происхождения нейтрино. Доказательством стало бы нестандартное явление на предполагаемом источнике, близкое по времени к нейтринному событию.

Взаимодействие телескопов-роботов сети «МАСТЕР» с детектором нейтрино IceCube
Глобальная сеть роботов-телескопов «МАСТЕР» МГУ почти 20 лет наблюдает минутные события в космосе и является мировым лидером в области ранних наблюдений гамма-всплесков. Начиная с 2015 года сеть активно участвует в программе быстрой оптической поддержки крупных физических и астрофизических экспериментов, таких как регистрация нейтрино сверхвысоких энергий. 

Одна из установок сети «МАСТЕР» — телескоп «МАСТЕР-Таврида», установленный в Крыму, — обнаружил быструю оптическую антивспышку сверхмассивной чёрной дыры через 76 секунд после того, как американский нейтринный детектор IceCube на Южном полюсе зафиксировал высокоэнергетические нейтрино, пришедшие из того же участка Вселенной.

«Блазар TXS 0506+056, зафиксированный нашим телескопом „МАСТЕР-Таврида“, находился в притушенном состоянии. Поле зрения телескопа „МАСТЕР“ составляет 4 квадратных градуса и полностью перекрывает квадрат ошибок источника нейтрино, — рассказал Владимир Липунов, заведующий лабораторией космического мониторинга ГАИШ МГУ, профессор физического факультета МГУ, руководитель Глобальной сети роботов-телескопов „МАСТЕР“, — Через два часа блеск квазара возрос и вернулся к своему обычному в те дни состоянию. Таким образом, наши наблюдения с огромной достоверностью (50 сигма) показывают, что в минутах от регистрации нейтрино блазар находился в аномально притушенном состоянии. 

Нам удалось предложить правдоподобное объяснение этому явлению. Дело в том, что нейтрино столь высоких энергий может рождаться при столкновениях протонов сверхвысоких энергий с окружающими фотонами. Нейтрино появляется, а протон исчезает. Таким образом, зафиксированное явление легко объяснить, если предположить, что наблюдаемое нами оптическое излучение — это результат свечения тех самых протонов. Поэтому нейтринный всплеск сопровождается понижением оптической светимости».

Астрофизики МГУ внесли решающий вклад в эту работу, поскольку именно они разработали, установили и роботизировали телескопы «МАСТЕР». В исследовании приняли участие иностранные учёные, поддерживающие зарубежные пункты сети «МАСТЕР», которые расположены в обоих полушариях, от Благовещенска до Анд. Это обстоятельство и позволило российским специалистам практически круглосуточно следить за космосом. 

«„МАСТЕР“ — единственная в мире полностью роботизированная сеть поисковых телескопов, установленных во всех частях света, — напомнил Владимир Липунов. — В 2017 году аргентинский телескоп сети провёл независимую локализацию источника гравитационных волн. А теперь нейтрино! Эта работа показывает, насколько высок технологический уровень нашего оборудования. Оно наверняка подарит нам новые фундаментальные открытия во Вселенной».