11
Календарь конференций
  • 23 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Междисциплинарная секция «Социально-экономическое воздействие цифровой трансформации»

  • 23 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Научно-практическая конференция «Региональное измерение цифровой трансформации»

  • 25 апреля

    Научно-практический семинар «Иностранная рабочая сила в российской экономике: эффекты, риски и прогнозы»

  • 25 апреля

    Ломоносовские чтения 2019. Секция Вычислительной математики и кибернетики (НИВЦ)

  • 16 – 18 мая

    Международная научно-практическая конференция «Инновационные технологии в физическом воспитании и спорте»

  • 17 мая

    Вторая международная конференция «Эффективные методы преподавания иностранных языков: теория и практика 2019»

  • 28 – 31 мая

    Международная конференция, посвящённая 90-летию кафедры высшей алгебры механико-математического факультета МГУ

  • 31 мая – 1 июня

    XXI международная конференция «Россия и Запад: диалог культур»

  • 31 мая – 1 июня

    XXI международная конференция «Россия и Запад: диалог культур»

  • 12 – 13 сентября

    47-ая Международная научно-практическая конференция «Татуровские чтения», посвященная 90-летию профессора А.Д. Шеремета на тему «Реформирование бухгалтерского учета, аудита и бухгалтерского образования в соответствии с международными стандартами в условия

  • 21 – 24 ноября

    IV Международная научная конференция «Конвергентные когнитивно-информационные технологии»

Все конференции
30/01/19

Физики МГУ нашли способ усовершенствовать оптические волноводы

В ходе изучения эффектов, возникающих в оптических волноводах при изменении расстояния между кремниевым волноводом и диэлектрической наночастицей, сотрудники физического факультета МГУ выяснили, что при определённом положении наночастицы относительно волновода в ней возникают неизвестные ранее физические эффекты. Учёные исследовали и описали их. Открытие физиков может найти применение в производстве фотонных устройств. Результаты исследования опубликованы в престижном журнале ACS Photonics.

В основе современной электроники лежат микросхемы, работающие на движении электронов. За последние полвека в электронике наблюдается тренд на уменьшение размеров микросхем и увеличение их энергоэффективности. Однако, по мнению экспертов, в ближайшие годы развитие электроники, основанной на «классических принципах» достигнет своего пика и упрётся в ограничения физических законов.

Разрешить предстоящее противоречие сможет интегральная нанофотоника. Основная цель этой области науки заключается в замене традиционных компонентов электроники на фотонные. Нанофотоника в последние годы развивается особенно бурно и возможно уже в ближайшем будущем найдёт способ заменить классические микросхемы устройствами, основанными на распространении светового сигнала. На физическом факультете МГУ такими разработками занимаются в лаборатории нанофотоники метаматериалов под руководством профессора Андрея Федянина.

«В нашей работе мы исследовали оптическую связь диэлектрической наночастицы с ключевым элементом интегральной нанофотоники — кремниевым волноводом, — рассказал ведущий автор исследования, аспирант кафедры квантовой электроники и младший научный сотрудник Центра квантовых технологий физического факультета МГУ Кирилл Охлопков. — С помощью совмещения одновременно двух экспериментальных методик (микроскопии генерации третьей оптической гармоники и конфокальной микроскопии) было показано, что при изменении расстояния между наночастицей и волноводом оптическая связь этих наноструктур влияет на условия возбуждения магнитного дипольного резонанса в наночастице, что приводит к заметной модуляции сигнала третьей оптической гармоники от наночастицы. Экспериментально детектируемое изменение сигнала третьей гармоники при этом достигало заметной величины — 4.5 раза. Также методами численного моделирования было продемонстрировано, что наночастица, в свою очередь, тоже влияет на излучение, распространяющееся по такому волноводу».

Таким образом, учёные выявили как влияние волновода на время жизни магнитного дипольного резонанса наночастицы, так и влияние близости наночастицы на распространяющееся по волноводу излучение.

«В наши дальнейшие планы входит экспериментальное исследование влияния резонансной наночастицы на волноводные моды, распространяющиеся по кремниевому волноводу, а также изучение вопросов распространения таких мод в волноводах, которые сами представляют собой последовательность резонансных кремниевых наночастиц, — подытожил Кирилл Охлопков. — Мы надеемся, что наше исследование послужит важным шагом на пути к интеграции диэлектрических Ми-резонансных наночастиц в фотонные устройства».