7
Календарь конференций
  • 5 – 6 октября

    Научно-практическая конференция VII Губеровские чтения: «Юго-Восточная Азия: историческое прошлое и современная реальность»

  • 26 октября

    Пятая ежегодная научная конференция консорциума журналов экономического факультета МГУ имени М.В. Ломоносова

  • 22 – 23 ноября

    X Овсянниковская международная эстетическая конференция

  • 23 – 26 ноября

    СОВМЕСТНАЯ XXII Международная научно-практическая конференция юридического факультета МГУ имени М.В.Ломоносова и XX Международная научно-практическая конференция "Кутафинские чтения" «Роль права в обеспечении благополучия человека»

  • 23 – 25 ноября

    Ежегодная Всероссийская научная конференция с международным участием «Наука в вузовском музее»

  • 24 – 27 ноября

    XVI Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 24 – 27 ноября

    XI Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 10 декабря

    Международная конференция по общему языкознанию «Наследие трудов Ю.В. Рождественского в XXI веке» — к 95-летию со дня рождения Юрия Владимировича Рождественского (1926-1999)

  • 15 декабря

    Четвертая международная научно-практическая конференция студентов и аспирантов «СМИ и журналистика: слово молодым»

Все конференции
25/08/21

Физики МГУ «научили» кремниевые микросхемы эффективно взаимодействовать со светом

Ученые МГУ совместно с коллегами из РАН и других российских институтов предложили для создания источников излучения на германиевых квантовых точках в кремнии использовать высокодобротные резонансы электромагнитного поля в двумерных фотонных кристаллах. Новый метод оказаться перспективным для создания оптоэлектронных интегральных схем в будущем. Результаты исследования опубликованы в журнале Laser & Photonics Reviews.

Большинство современных цифровых микросхем сегодня изготавливается на основе кремния по технологии КМОП (CMOS) – комплементарная металл-оксид-полупроводник структура (англ. – complementary metal-oxide-semiconductor). Из-за большой плотности элементов в таких схемах основным препятствием для увеличения их производимости стало большое в них тепловыделение. Уменьшить тепловыделение можно, перейдя от омических (через металлические контакты) связей между элементами в микросхемах к оптическим.  

«К сожалению, сам по себе кремний слабо взаимодействует со светом: он плохой излучатель и поглотитель фотонов. Или, пожалуй, к счастью. Иначе наши компьютеры и мобильные телефоны скорее бы светились, чем работали. Однако "научить" кремниевые микросхемы все-таки эффективно взаимодействовать со светом – чрезвычайно важная задача. Мы с коллегами решили эту задачу с помощью внедренных в кремниевую структуру германиевых наноточек, изготовив на ее поверхности специально рассчитанный фотонно-кристаллический слой с усиливающими излучение фотонными резонансами особого типа – так называемыми связанными состояниями в континууме», – объяснил один из соавторов работы, профессор физического факультета МГУ Сергей Тиходеев.

Ученые описали наблюдаемые пики фотолюминесценции и их симметрию в терминах представлений точечной группы и объяснили, почему различные связанные состояния в континууме видны в спектрах фотолюминесценции в форме пиков, хотя широко распространено мнение, что они должны быть оптически неактивными.

Авторы работы также теоретически смоделировали спектральные особенности, рассчитав диаграммы направленности излучательной эффективности с использованием Фурье-модального метода в форме матрицы рассеяния и продемонстрировали появление связанных состояний в континууме в структуре за счет деструктивной интерференции двух мод.

Соавторы работы: Дьяков Сергей и Гиппиус Николай (Сколтех); Новиков Алексей и Красильник Захарий (ИФМ РАН и ННГУ); Степихова Маргарита, Юрасов Дмитрий и Шалеев Михаил (ИФМ РАН); Богданов Андрей (университет ИТМО); Тиходеев Сергей (МГУ и ИОФ РАН).