5
Календарь конференций
  • 28 – 29 марта

    Четвёртая Открытая Конференция Юных Учёных

  • 16 декабря – 5 апреля

    Универсиада «Ломоносов» по менеджменту и международному бизнесу

  • 22 февраля – 11 апреля

    Открытые курсы для школьников (10-11 классы) «Обществознание. Основы Конституции. Права человека»

  • 13 – 17 апреля

    Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020»

  • 30 ноября – 15 апреля

    Универсиада «Ломоносов»-2020 по прикладной математике и информатике

  • 15 февраля – 19 апреля

    Универсиада «Ломоносов» по истории и истории искусства

  • 13 января – 22 апреля

    Универсиада "Ломоносов" по международным отношениям 2019/2020 учебного года

  • 25 – 29 августа

    Симпозиум № 365 Международного астрономического союза «Динамика конвективных зон и атмосфер Солнца и звезд»

Все конференции
14/02/20

Физики МГУ обучили нейросеть анализировать ошибки при измерении квантовых состояний

 Архитектура нейронной сети с прямой связью, использованной для обработки экспериментальных данных
Архитектура нейронной сети с прямой связью, использованной для обработки экспериментальных данных

Физики Центра квантовых технологий физического факультета МГУ совместно с группой ученых из Сколтеха под руководством Джейкоба Биамонте использовала глубокую нейросеть для анализа экспериментальных данных при квантовой томографии пространственных состояний фотонов. Этот метод оказался значительно эффективнее традиционных способов, используемых в подобных случаях. Результаты эксперимента опубликованы в журнале npj Quantum Information.

С развитием квантовых технологий сложность создаваемых квантовых устройств быстро увеличивается, поэтому важнейшей задачей становится разработка методов характеризации и отладки, которые позволили бы исследователям понять, насколько хорошо эти устройства работают, и насколько экспериментальная реальность соответствует теоретическим моделям. Главным методом в задачах такого рода является квантовая томография — процедура, позволяющая узнать квантовое состояние или описание квантового процесса на основе статистической обработки большого массива экспериментальных данных. В процессе обработки данных исследователям необходимо вычленить и исключить данные об инструментальных ошибках, возникающих при детектировании квантовых состояний.

Учёные МГУ и Сколтеха исследовали пространственные состояния фотонов. В экспериментах такого рода измерения осуществляются с помощью специальных голограмм, преобразующих фазу светового пучка, который затем фокусируется в одномодовое волокно. Эти голограммы работают не идеально, и чем больше размерность квантового состояния, тем больше «мелких особенностей» в структуре пучка, и соответственно, тем сложнее провести хорошее измерение. Традиционный метод корректировки «шумных данных», полученных экспериментальным путем, заключается в том, чтобы измерить возникающие «неидеальности» и аналитически построить систему поправок, которая их учитывает.

Использовав вместо традиционного метода глубокую нейросеть, ученые пришли к выводу, что она позволяет эффективнее, чем традиционный метод, избавиться от экспериментальных шумов в процессе измерения и значительно улучшает качество восстановления состояния. Архитектура и методы обучения нейросети, использованной в эксперименте, были разработаны группой ученых из Сколтеха.

«В последнее время появляется всё больше исследований на стыке квантовых технологий и нейросетей, ведь анализ шумных данных — естественная область применения алгоритмов машинного обучения, — рассказал один из авторов статьи, ведущий научный сотрудник Центра квантовых технологий Станислав Страупе. — Проблема ошибок в приготовлении и измерении квантовых состояний — одна из ключевых при практической реализации квантовых алгоритмов и квантовых протоколов связи. И мы уверены, что использование новых возможностей в этой области, в том числе тех, которые использовали мы в нашей работе с коллегами из Сколтеха, помогут решать эту проблему быстрее и эффективнее».

Авторы статьи отмечают, что предложенные в работе идеи можно использовать в самых разнообразных задачах, связанных с квантовой томографией. Например, таких, как отладка логических вентилей в квантовых компьютерах, тестирование квантовых каналов связи, калибровка квантовых сенсоров.