16
Календарь конференций
  • 1 – 4 декабря

    XLVII Международная конференция Общества по изучению культуры США «Преодоление: выработка идеалов и их отображение в культуре США \ Overcoming: Cultivating Ideals through Overcoming Barriers in American culture»

  • 6 – 10 декабря

    Конференция студентов, аспирантов и молодых ученых «Философия в XXI веке: новые стратегии философского поиска»

  • 7 – 10 декабря

    18-я Международная конференция «Государственное управление: современные вызовы»

  • 8 декабря

    XI международная научно-практическая конференция НАММИ. Актуальные проблемы медиаисследований – 2021

  • 10 декабря

    IV Научная конференция «Актуальные проблемы экранных и интерактивных медиа». Искусственный интеллект и новые возможности экранных искусств и медиаиндустрии

  • 10 декабря

    Международная студенческая конференция «История России и Германии: актуальные темы и обмен опытом между молодыми учёными» | Studentische Kolloquium «Deutsche und russische Geschichte: Aktuelle Themen und Erfahrungsaustausch zwischen jungen Historiker(inne

  • 13 декабря – 13 февраля

    XXIX Московская открытая олимпиада школьников по геологии 2021-2022 года

  • 16 декабря

    Всероссийский уголовно-правовой форум молодых ученых имени М.Н. Гернета

  • 24 ноября – 29 декабря

    Круглый стол «Литературные события 2010-2020-х годов»

  • 2 апреля

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

Все конференции
15/11/21

Физики МГУ обучили нейросеть предсказывать полноту набора измерений в квантовой томографии

Международная группа ученых, включающая сотрудников Центра квантовых технологий физического факультета МГУ имени М.В.Ломоносова, обучила свёрточную нейронную сеть предсказывать, является ли набор измерений в квантовой томографии информационно полным или нет. Это позволяет реконструировать квантовые состояния за меньшее количество измерений по сравнению с традиционными подходами, не используя при этом априорных предположений о возможном типе состояния. Также исследователи добавили вторую нейронную сеть, чтобы определять точность реконструкции без явного проведения томографии состояния. Статья по результатам работы опубликована в New Journal of Physics.

Методы сжатого считывания (compressive sensing) квантовых состояний, не использующие априорную информацию, опираются на процедуру определения полноты набора проведённых измерений. В момент, когда набор становится полным, возможно однозначное восстановление неизвестного исследуемого состояния по результатам измерений. До недавнего времени определение полноты измерений сводилось к серии задач оптимизации, решения которых нужно было вычислять по ходу эксперимента. Замена оптимизационного алгоритма предварительно обученной нейронной сетью позволяет существенно снизить сложность вычислений (например, для состояний размерности 64 продемонстрировано ускорение на 3 порядка), что ведёт к кратному уменьшению затрачиваемого время при проведении эксперимента. Соответственно, повышается точность томографии при наличии флуктуаций исследуемого состояния во времени, и результаты меньше подвержены эффекту накопления шумов.

Представленные свёрточные нейронные сети проверялись как в эксперименте с многофотонными поляризационными состояниями, так и для пространственных состояний света большой размерности.

«Обучение нейросетей может быть выполнено заранее, на синтетических данных, полученных посредством симуляции работы экспериментальной установки, – рассказал один из авторов статьи Глеб Стручалин, научный сотрудник Центра квантовых технологий физического факультета МГУ. – Затем полученные нейросети могут без изменений многократно применяться в различных реальных экспериментах для определения полноты измерений и оценки точности восстановления состояния. В то же время, качество предсказаний, выдаваемых нейросетями, повышается, если в синтетическую обучающую выборку добавить результаты измерений, полученные в эксперименте. При этом нейросети изучат модель шума, которая отсутствовала в симулированных данных».