2
Календарь конференций
  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 25 – 29 августа

    Международный симпозиум по космическим лучам предельно высоких энергий UHECR-2020

  • 25 – 29 августа

    Симпозиум № 365 Международного астрономического союза «Динамика конвективных зон и атмосфер Солнца и звезд»

  • 1 – 30 ноября

    Внутривузовский этап в МГУ имени М.В. Ломоносова Всероссийского конкурса научно-исследовательских работ студентов и аспирантов "Наука будущего - наука молодых"

  • 10 – 11 ноября

    V Международная научно-практическая конференция «Инновационная экономика и менеджмент: методы и технологии»

  • 23 – 26 ноября

    Всероссийская конференция и XII научная молодежная Школа с международным участием

  • 17 – 18 декабря

    VII Международная научная конференция «Русская литература ХХ–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 1 сентября – 31 декабря

    Форум «Гуманитарные науки и вызовы современности»

  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 2 февраля

    Международная научная конференция "Новые идеи и теоретические аспекты инженерной геологии"

Все конференции
08/07/20

Новая технология изготовления кремниевых наночастиц для биомедицинской диагностики предложена физиками МГУ

Сотрудники кафедры общей физики и молекулярной электроники физического факультета МГУ совместно с коллегами из Института прикладной физики РАН разработали новую технологию изготовления кремниевых наночастиц и показали перспективу их использования для визуализации структурных неоднородностей при решении задач биомедицинской диагностики. Результаты работы опубликованы в журнале «Квантовая электроника».

Интерес к таким исследованиям связан с активным развитием технологий наноструктурирования кремния. Этот материал уже давно используется не только в качестве основы микросхем и солнечных элементов, но и в биомедицинских целях, например, для диагностики тканей и клеток. Правда, в этом случае речь идёт только о нетоксичных и достаточно малых (менее 100 нм) кремниевых частицах. Проблема в том, что традиционные методы формирования наночастиц не обеспечивают соответствия указанным требованиям. Один из наиболее распространённых подходов состоит в механическом измельчении слоёв пористого кремния — материала, представляющего собой кремниевую матрицу наподобие губки с нанометровыми воздушными порами. Однако размол таких структур в большинстве случаев не позволяет получить кремниевые кластеры размером менее 100 нм. Методы коллоидного химического синтеза тоже имеют ограничения из-за большого количества остаточных токсичных примесей в продуктах реакции.

На этом фоне хорошо зарекомендовала себя импульсная лазерная абляция (удаление вещества с мишени лазерными импульсами) кремния в жидкостях и газах. Варьирование их состава позволяет изготавливать кремниевые наночастицы разного размера, в том числе величиной в единицы и десятки нанометров. При этом удаётся достичь высокой степени химической чистоты и кристалличности формируемых структур. Существенный недостаток метода — относительно малый массовый выход продуктов абляции, агломерирующих в наночастицы. Нужно либо увеличивать энергию и частоту лазерных импульсов за счёт применения более сложных и дорогих лазеров, либо использовать вместо мишеней монокристаллического кремния иные.

Сотрудники лаборатории фемтосекундной нанофотоники физического факультета МГУ провели исследования, показавшие перспективность применения в качестве мишеней для абляции плёнок пористого кремния, изготавливаемых относительно простым и дешёвым методом электрохимического травления. Использование таких структур позволяет за счёт малой теплопроводности и механической прочности в разы повысить массовый выход кремниевых наночастиц по сравнению с абляцией пластин кристаллического кремния лазерными импульсами с теми же энергетическими характеристиками.

«Изготовленные с помощью этой технологии кремниевые наночастицы мы осадили на поверхность пористого агарового геля, имитирующего биологическую ткань, — рассказал один из авторов статьи, доцент кафедры общей физики и молекулярной электроники физического факультета МГУ к.ф.-м.н. Станислав Заботнов. — И в результате показали, что, благодаря присущему им эффективному рассеянию света, можно получать высококонтрастные изображения неоднородностей изначально практически прозрачного агарового геля. А это важный шаг в решении задач биомедицинской диагностики — визуализации биологических и биоподобных тканей».