Размер шрифта:
  • А
  • А
  • А
Цветовая схема:
  • А
  • А
  • А
Календарь конференций
  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 25 – 29 августа

    Международный симпозиум по космическим лучам предельно высоких энергий UHECR-2020

  • 25 – 29 августа

    Симпозиум № 365 Международного астрономического союза «Динамика конвективных зон и атмосфер Солнца и звезд»

  • 1 – 30 ноября

    Внутривузовский этап в МГУ имени М.В. Ломоносова Всероссийского конкурса научно-исследовательских работ студентов и аспирантов "Наука будущего - наука молодых"

  • 10 – 11 ноября

    V Международная научно-практическая конференция «ИННОВАЦИОННАЯ ЭКОНОМИКА И МЕНЕДЖМЕНТ: МЕТОДЫ И ТЕХНОЛОГИИ»

  • 23 – 26 ноября

    Всероссийская конференция и XII научная молодежная Школа с международным участием

  • 17 – 18 декабря

    VII Международная научная конференция «Русская литература ХХ–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 1 сентября – 31 декабря

    Форум «Гуманитарные науки и вызовы современности»

  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 2 февраля

    Международная научная конференция "Новые идеи и теоретические аспекты инженерной геологии"

Все конференции
Горячая линия
Электронная трудовая книжка

Олимпиады школьников и универсиады в МГУ
Конкурсы на замещение должностей научных и педагогических работников
Гранты Президента РФ
14/02/17

Физики МГУ разработали новый метод создания перепутанных состояний фотонов

Пучки фотонов, заснятые с помощью ПЗС-матрицы . Цвета соответствуют интенсивности: от черного (минимальной) до белого (максимальной). Источник: Егор Ковлаков
Пучки фотонов, заснятые с помощью ПЗС-матрицы . Цвета соответствуют интенсивности: от черного (минимальной) до белого (максимальной). Источник: Егор Ковлаков

Сотрудники физического факультета МГУ имени М.В.Ломоносова разработали новый метод создания перепутанных состояний фотонов — состояния, в которых пары фотонов оказываются коррелированы — взаимосвязаны — между собой. О своей работе ученые рассказали в статье, которая была опубликована в журнале Physical Review Letters.

Физики МГУ изучили перепутанное состояние фотонов. При перепутанном, или запутанном, состоянии фотонов состояние определено только для всей системы, а для каждой частицы в отдельности — нет.

«Перепутанные состояния вообще типичны и повсеместны. Проблема только в том, что для большинства частиц взаимодействие с окружением быстро разрушает перепутывание. Фотоны же практически ни с чем не взаимодействуют, поэтому они являются очень удобным объектом для экспериментов в этой области. Большая часть источников света, с которыми мы сталкиваемся в жизни — классическая, это, например, тепловой свет (Солнце, звезды, лампы накаливания и т.п.), когерентное излучение лазера — тоже классическое. Создание неклассического света — непростая задача. Можно, например, изолировать одиночный атом или искусственную структуру, типа квантовой точки, и регистрировать его излучение — так получают одиночные фотоны», — рассказал Станислав Страупе, соавтор статьи, кандидат физико-математических наук, сотрудник кафедры квантовой электроники и лаборатории квантовых оптических технологий физического факультета МГУ.

Для получения перепутанных состояний фотонов чаще всего используют эффект спонтанного параметрического рассеяния света в нелинейных кристаллах. В этом процессе фотон лазерной накачки распадается на два фотона. При этом в силу законов сохранения состояния фотонов оказываются коррелированы, перепутаны. «В нашей работе мы предложили и опробовали новый метод создания пространственного перепутывания — пары фотонов, генерируемые в нашем эксперименте, распространяются пучками, которые оказываются коррелированы по "пространственной форме". Ключевой особенностью нашего метода по сравнению с известными ранее является эффективность», — прокомментировал Егор Ковлаков, соавтор статьи, аспирант кафедры квантовой электроники отделения радиофизики физического факультета МГУ.

Изучение перепутанных состояний фотона началось в 70-х годах, и сейчас особо активно они применяются в квантовой криптографии — это область передачи квантовой информации и квантовой связи.

«Квантовая криптография — лишь одно из возможных приложений, но наиболее на данный момент развитое. В отличии от классической связи, где неважно, какой именно алфавит используется для кодирования сообщения и достаточно использовать бинарный (0 и 1), в квантовой связи все сложнее. Оказывается, что повышение размерности алфавита не только увеличивает количество информации, кодируемое в одном фотоне, но и увеличивает секретность связи. Поэтому хочется развивать системы квантовой связи, основанные в том числе и на кодировании информации в пространственной форме фотонов», — отметил Станислав Страупе. Ученые планируют, что в дальнейшем их разработка будет применяться для создания оптического канала со спутником, куда нельзя протянуть оптическое волокно (световод) — основу для оптоволоконной связи.