Размер шрифта:
  • А
  • А
  • А
Цветовая схема:
  • А
  • А
  • А
Календарь конференций
  • 8 октября

    Международная конференция студентов, аспирантов и молодых ученых «Эволюция права-2020»

  • 26 – 27 октября

    VI Международная научно-практическая конференция «Инновационная экономика и менеджмент: методы и технологии»

  • 9 – 12 ноября

    4-я международная школа по квантовым технологиям

  • 16 – 19 ноября

    200 лет Греческой революции (1821 – 2021): история, литература, культура

  • 17 – 18 ноября

    Всероссийская научная конференция с международным участием «Природная и антропогенная неоднородность почв и статистические методы ее изучения»

  • 19 – 20 ноября

    Юбилейная конференция кафедры прикладной институциональной экономики экономического факультета МГУ имени М.В. Ломоносова

  • 23 – 26 ноября

    СОВМЕСТНАЯ XXII Международная научно-практическая конференция юридического факультета МГУ имени М.В.Ломоносова и XX Международная научно-практическая конференция "Кутафинские чтения" «Роль права в обеспечении благополучия человека»

  • 24 – 27 ноября

    XI Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 24 – 27 ноября

    VI Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 10 декабря

    Международная конференция по общему языкознанию «Наследие трудов Ю.В. Рождественского в XXI веке» — к 95-летию со дня рождения Юрия Владимировича Рождественского (1926-1999)

Все конференции
Проект «Вернадский»
ЗАПИСАТЬСЯ НА ВАКЦИНАЦИЮ
Филиал МГУ в г. Сарове

Гранты Президента РФ
Программы поддержки талантливой молодежи

Химики МГУ решили проблему синтеза фотонных кристаллов

Изображение поперечного сечения микроструктуры фотонного кристалла. Фотонный кристалл состоит из трубок с одинаковым внешним диаметром. В правом нижнем углу видна рассечённая трубка, внутренний диаметр которой периодически изменяется
Изображение поперечного сечения микроструктуры фотонного кристалла. Фотонный кристалл состоит из трубок с одинаковым внешним диаметром. В правом нижнем углу видна рассечённая трубка, внутренний диаметр которой периодически изменяется

Сотрудники факультета наук о материалах и химического факультета МГУ имени М.В.Ломоносова разработали новый способ синтеза фотонных кристаллов — основы будущих фотонных компьютеров, а также солнечных элементов. Исследование опубликовано в журнале Electrochemistry Communications.

Фотонный кристалл — не только красивая игрушка природы, такая как опал, например, или крылья африканской бабочки-парусника. В нем скрыты возможности для создания таких технологий будущего, как фотонный компьютер, суперлинза и суперпризма, фотонные сверхпроводники и многое другое. В зависимости от сочетания энергии падающего на кристалл фотона и свойств кристалла, фотон может либо распространяться в материале, либо отражаться от него. Если задавать структурные характеристики кристалла, то появляется возможность управлять распространением света в нем.

Особенный интерес для материаловедов представляют кристаллы, в которых не только оптическая, но и диэлектрическая проницаемость меняется с периодом, сравнимым с длиной световой волны. Такие материалы позволяют максимально эффективно переводить энергию фотонов в энергию электронов. А это особенно важно для производства фотоэлементов.

Существует множество методов получения фотонных кристаллов: самосборка, травление, голография, фотолитография, анодирование. Последний считается наиболее перспективным с промышленной точки зрения, потому что это сравнительно дешёвый метод получения нанопористых оксидов таких металлов, как алюминий, титан, цирконий, гафний и других.

Процесс проводят в двухэлектродной электрохимической ячейке: в электролит опускают катод и анод (металлические пластины) и подают напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла до оксида — анодирование. Если проводить анодирование с периодически изменяющимися напряжением и током анодирования, то формируется пористая плёнка оксида с заданной по толщине пористостью и, следовательно, с модуляцией эффективного показателя преломления и диэлектрической проницаемости по толщине плёнки. Таким способом и получается фотонный кристалл.

Оксид титана TiO2 обладает более высоким показателем преломления, чем самый популярный анодный оксид — оксид алюминия, что при заданных оптических свойствах позволяет создавать на основе оксида титана более тонкие материалы. Если рассматривать фотонные кристаллы для солнечных батарей, то оксид титана наиболее подходит в качестве материала из-за своих полупроводниковых свойств.

В теории подобный процесс звучит отлично, но до сих пор отсутствие воспроизводимой и недорогой технологии создания фотонных кристаллов на основе диоксида титана мешало практическому применению таких материалов. Сотрудники химического факультета и факультета наук о материалах МГУ под руководством кандидата химических наук, научного сотрудника Нины Саполетовой усовершенствовали методику синтеза диоксида титана при помощи анодирования, что позволило точно задавать структуру пористых оксидных плёнок.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40-60 Вольт в зависимости от плотности заряда, ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся с толщиной плёнки внутренним диаметром.

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры», — пояснил один из авторов работы, научный сотрудник химического факультета МГУ Сергей Кушнир. — Мы разработали новую методику, ключевым составляющим которой является in situ [прим. — непосредственно во время синтеза] измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоёв с различной пористостью в формируемой оксидной плёнке».

Ранее ученые уже показали, что замена обычного диоксида титана на одномерный фотонный кристалл в фотоэлементах увеличит их эффективность в полтора раза. Поэтому у разработки ученых МГУ большой потенциал, считают авторы работы.