16
Календарь конференций
  • 1 – 10 сентября

    Страница регистрации и проведения вступительного испытания в ШЮЖ факультета журналистики МГУ в 2023 году

  • 15 – 17 сентября

    Всероссийская молодежная школа-конференция «Молекулярные механизмы регуляции физиологических функций»

  • 20 сентября

    Международная научная конференция «Переменные нагружения в механике деформируемого твердого тела», посвященная 100-летию со дня рождения В.В. Москвитина

  • 27 сентября – 1 октября

    X международный научно-образовательный форум молодых исследователей «Языки. Культуры. Перевод»

  • 28 сентября – 1 октября

    Международная летняя школа студенческих научных обществ

  • 27 сентября – 1 октября

    X международный научно-образовательный форум молодых исследователей «Языки. Культуры. Перевод»

  • 28 сентября – 1 октября

    Международная летняя школа студенческих научных обществ

  • 15 октября – 16 декабря

    VII Международный конкурс на лучшую научную работу «Аrs Sacra Audit»

  • 25 – 26 октября

    Всероссийская междисциплинарная научная конференция «МУЗЕЙ – НАУКЕ» (к 180-летнему юбилею профессора МГУ Д.Н. Анучина и 140-летию организации Музея антропологии)

  • 21 – 24 ноября

    СОВМЕСТНАЯ XXIV Международная научно-практическая конференция юридического факультета МГУ имени М.В. Ломоносова и XXIV Международная научно-практическая конференция «Кутафинские чтения» «Правовое обеспечение суверенитета России: проблемы и перспективы»

  • 21 – 23 ноября

    Ежегодная научно-практическая конференция с международным участием «Наука в вузовском музее»

  • 23 – 24 ноября

    Международная научная конференция «VIII Соколовские научные чтения: Русская литература в периодических изданиях»

Все конференции
08/06/22

Химики МГУ с коллегами раскрыли биохимический механизм неспособности к обучению

Сотрудники химического факультета и Института функциональной геномики МГУ, а также Сколтеха вместе с коллегами из Стокгольмского университета (Швеция) установили механизм сборки молекулярных машин, создающих белки клеточных «батареек» — митохондрий. Мыши с нарушением этого механизма оказались слабыми и совсем не поддавались обучению. Статья ученых опубликована в Nature.

В клетках человека есть маленькие энергетические фабрики — митохондрии. Когда-то они образовались из бактерий, которых давным-давно поглотили эукариоты. При этом в нашем организме сохранились два независимых аппарата экспрессии генов. Экспрессия — это процесс, в котором наследственная информация из ДНК преобразуется в РНК и затем в белок.

«Один из процессов работает в ядре и цитоплазме и достался нам в наследство от архей, хоть и в сильно видоизмененном виде, — рассказал один из соавторов работы, профессор кафедры химии природных соединений химического факультета и директор Института функциональной геномики МГУ, член-корреспондент РАН Петр Сергиев. — Другой, независимый, реализуется в митохондриях, и он достался нам от бактерий. Соответственно, у нас в организме есть два вида рибосом — и два аппарата синтеза белка. Рибосомы собираются на основе рибосомной РНК путем присоединения к ней различных молекул».

Как происходит сборка рибосомы в ядре и цитоплазме, ученые знают довольно хорошо.

«Мы же исследуем то, что происходит в митохондриях, потому что это пока изучено плохо, — добавил профессор Сергиев. — И вот два года назад мы открыли два фермента, которые модифицируют рибосомную РНК и участвуют в сборке митохондриальных рибосом. С помощью анализа промежуточных стадий процесса мы определили, на каком этапе эти ферменты — метилтрансферазы — работают, как они помогают сборке и что в сборке идет не так».

Затем химики МГУ начали сотрудничество с группой Алексея Амунтса из Стокгольмского университета, которая специализируется на структурных исследованиях митохондриальных рибосом.

«В ходе этого сотрудничества наш сотрудник Иван Лаптев привез в Стокгольм генетически измененные линии клеток, в которых были инактивированы ключевые, по нашему мнению, метилтрансферазы, — рассказал Петр Сергиев. — Стокгольмские коллеги выделили митохондрии, в которых содержались недостроенные рибосомы, и определили их структуру, визуализировав процесс сборки».

Структурный анализ полностью подтвердил результат ученых из МГУ, полученный на основе функциональных данных. У расшифрованного механизма оказалось серьезное прикладное применение. Ученые химического факультета и Института функциональной геномики МГУ с коллегами из Сколтеха вырастили мышей с инактивированными ферментами, и посмотрели, «что с ними не так».

«Оказалось, эти мыши слабые, невыносливые и необучаемые, — рассказал Петр Сергиев. — Мы пытались их обучать разными способами. Например, один из стандартных экспериментов заключается в том, что животное сажают в освещенный ящик, из которого есть несколько выходов. Все, кроме одного, заканчиваются тупиком, один же ведет в ее домашнюю клетку, где ей уютно и комфортно. Нормальная мышь, найдя правильный выход, запоминает его, и в следующий раз сразу бежит к нему. Но мышь с инактивированными ферментами запомнить правильный путь не может и раз за разом ищет его заново». Статья об этой работе вышла в IJMS.

Поскольку митохондрии выполняют роль «батареек» клеток, нарушение их работы из-за неактивности ферментов привело к тому, что они оказались «разряжены». От этого особенно страдают наиболее энергозатратные процессы — сокращение мышц (в результате животные оказались слабее своих здоровых сородичей) и все те мозговые функции, которые обусловливают интеллектуальные способности, хотя внешне мыши выглядят вполне нормально.

Как отметил ученый, детали механизма еще требуют серьезного изучения, поэтому впереди еще много фундаментальных исследований.