1
Календарь конференций
  • 17 сентября – 10 декабря

    Серия образовательных мероприятий компании Elsevier по подготовке научных публикаций на английском языке в высокорейтинговых журналах для сотрудников МГУ

  • 10 октября

    II Всероссийская научно-практическая конференция преподавателей, научных сотрудников и аспирантов «Социальная динамика населения и устойчивое развитие»

  • 14 – 15 октября

    Московская осенняя международная конференция по перовскитной фотовольтаике

  • 24 – 25 октября

    Всероссийская научно-практическая конференция (с международным участием) «Природа российского уголовного процесса и принцип состязательности: к 125-летию со дня рождения М.С. Строговича»

  • 21 – 24 ноября

    XIV Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 21 – 24 ноября

    IV Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 28 – 30 ноября

    Международная конференция VI Соколовские чтения «Русская литература XX века в контексте литературных связей и взаимовлияний»

  • 29 ноября

    Кристаллохимия в пространстве и времени: научные чтения, посвященные 70-летию кафедры кристаллографии и кристаллохимии геологического факультета МГУ

  • 17 сентября – 10 декабря

    Серия образовательных мероприятий компании Elsevier по подготовке научных публикаций на английском языке в высокорейтинговых журналах для сотрудников МГУ

  • 28 – 29 марта

    Четвёртая Открытая Конференция Юных Учёных

Все конференции
04/03/19

Химики МГУ создали новый магнитный материал с заданной структурой и необычными свойствами

Структура соединения // Источник: Андрей Владимирович Шевельков / МГУ
Структура соединения // Источник: Андрей Владимирович Шевельков / МГУ

Сотрудники кафедры неорганической химии МГУ совместно со своими коллегами из США, Германии и Эстонии синтезировали и изучили новый магнитоактивный материал. Необычные свойства полученных соединений открывают новые возможности как для научных, так и прикладных работ. Результаты исследования опубликованы в издании Journal of Alloys and Compounds.

Помимо привычных постоянных магнитов, магнитные материалы нашли широкое распространение в электронике, они повсеместно используются для хранения информации – как основа для жестких дисков. Соединения со сложной магнитной структурой считаются перспективными материалами для новых запоминающих устройств с большей плотностью записи и скоростью работы. Также такие соединения рассматриваются в качестве возможных магнетокалорических материалов, которые можно охлаждать или нагревать изменением внешнего магнитного поля.

Чтобы успешно создавать магнитные материалы с заданными свойствами, необходимо исследовать фундаментальные закономерности между структурой и свойствами соединений. Поэтому научная группа под руководством заведующего кафедрой неорганической химии химического факультета МГУ, д.х.н. профессора Андрея Шевелькова ведет работу по синтезу неорганических соединений со сложной магнитной структурой. Основная задача ученых – поиск материалов с блочной кристаллической структурой, в которой бы присутствовали магнитоактивные атомы, имеющие различное окружение. За счет различия в окружении направление и величина магнитного момента на магнитоактивных атомах будет также различаться, что в итоге позволит создавать сложную магнитную структуру.

Синтезируемые химиками магнитные соединения построены по принципу кристаллографического срастания – явление, при котором на атомном уровне структура соединения строится из связанных и упорядоченно чередующих блоков, принадлежащих разным типам структур. «Возьмем для примера два соединения с различным расположением атомов в их кристаллических структурах. Вырежем очень тонкие слои, толщиной несколько атомов каждого соединения, и совместим их, чередуя один через один. В результате даже в одной элементарной ячейке (наименьший повторяющийся фрагмент кристаллической структуры) будет содержаться блок как одного типа, так и другого», – пояснил один из авторов исследования, аспирант Роман Халания.

Химики МГУ синтезировали соединения со сложной структурой из простых веществ – порошков железа, германия, фосфора и мышьяка. В работе ученые определили атомную структуру соединений, состоящую из блоков двух типов структур, чередующиеся в одной плоскости. Сами блоки представляют собой колонки шириной в несколько атомов. Формирование конечной структуры происходит благодаря точной подгонке блоков за счет замещения в определенных позициях атомов германия на атомы фосфора и мышьяка.

Исследование магнитных свойств данных соединений показало, что все они оказались антиферромагнетиками – веществами, в которых магнитные моменты соседних атомов (ионов) взаимно компенсируются, так что полный магнитный момент (намагниченность) тела близок к нулю, в отличие от ферромагнетиков (железо, кобальт), имеющих собственную намагниченность. Однако поведение синтезированных химиками образцов отличается от тривиального для антиферромагнетиков. Так, температура магнитного упорядочения, при которой вещества переходят в антиферромагнитное состояние, оказалась значительно ниже предполагаемой по теоретическим расчётам, что показывает сильную несогласованность магнитных взаимодействий в структуре соединения. Кроме того, при низких температурах намагниченность у образцов возрастает с уменьшением температуры, что также не характерно для антиферромагнетиков.