Размер шрифта:
  • А
  • А
  • А
Цветовая схема:
  • А
  • А
  • А
Календарь конференций
  • 8 – 14 сентября

    Теория особенностей и её приложения к дифференциальным уравнениям и дифференциальной геометрии

  • 17 сентября – 10 декабря

    Серия образовательных мероприятий компании Elsevier по подготовке научных публикаций на английском языке в высокорейтинговых журналах для сотрудников МГУ

  • 14 – 16 октября

    Всероссийская научная конференция «Астрометрия вчера, сегодня, завтра»

  • 24 – 25 октября

    Всероссийская научно-практическая конференция (с международным участием) «Природа российского уголовного процесса и принцип состязательности: к 125-летию со дня рождения М.С. Строговича»

  • 21 – 24 ноября

    XIV Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 21 – 22 ноября

    Международная научная конференция Хачатуровские чтения - 2019 «Устойчивое развитие и новые модели экономики"

  • 21 – 24 ноября

    VIII Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 4 – 7 декабря

    XLV Международная конференция Общества по изучению культуры США "Иммиграция и американская культура - Immigration and American Culture"

  • 17 сентября – 10 декабря

    Серия образовательных мероприятий компании Elsevier по подготовке научных публикаций на английском языке в высокорейтинговых журналах для сотрудников МГУ

  • 28 – 29 марта

    Четвёртая Открытая Конференция Юных Учёных

Все конференции
Конкурсы на замещение должностей научных и педагогических работников
Проект «Вернадский»
Программы поддержки талантливой молодежи
Программы дополни-
тельного образования
Единая поисковая система по зарубежным базам данных
30/03/17

Исследования российских ученых о ранних стадиях эмбриогенеза

Двойная спираль ДНК. Источник: Сергей Ульянов.
Двойная спираль ДНК. Источник: Сергей Ульянов.

Ученые биологического факультета МГУ имени М.В.Ломоносова впервые построили подробные карты пространственной организации генома в индивидуальных клетках и изучили особенности пространственной организации материнского и отцовского геномов в зиготах мыши. Результаты исследований опубликованы в журнале Nature.

Исследования биологов МГУ подтвердили предложенную ранее модель, постулирующую, что при сохранении общих принципов упаковки генома характер укладки хроматиновой фибриллы в индивидуальных клетках может существенно различаться. Получение этих результатов стало возможным благодаря тому, что авторы разработали новый экспериментальный подход для исследования пространственной организации генома в ядрах индивидуальных клеток.

В ядрах клеток молекулы ДНК упакованы в особые структуры — хромосомы, — которые можно представить себе как сложные, но не случайным образом спутанные клубки. Вещество хромосом, представляющее собой в основном комплекс ДНК, РНК и белков, называется хроматином. Биологи разработали новую методику изучения того, как хроматин упакован в ядре живой клетки. Эта методика является значительно усовершенствованным вариантом классического подхода к исследованию трехмерной структуры генома — Hi-C (high-throughput chromosome conformation capture).

«Возьмем три условных участка ДНК: А, B и С. Первые два расположены друг за другом в геноме — они соседи, а третий, предположим, находится от них на расстоянии в несколько миллионов пар нуклеотидов. Но хромосома может быть так упакована, что фрагмент С окажется рядом с А или В в пространстве. Мы можем установить этот факт (не для трех случайных участков ДНК, а в масштабе всего генома одновременно) и использовать эту информацию для построения карт пространственной структуры хроматина в живой клетке, так работает метод Hi-C», — рассказал один из авторов работы, кандидат биологических наук Сергей Ульянов.

В стандартном методе Hi-C для проведения одного эксперимента, как правило, требуется несколько сотен тысяч и даже миллионов клеток. Новая методика позволяет работать с одной отдельно взятой клеткой и составлять ее индивидуальную карту трехмерной структуры хромосом. Основным новшеством в этой методике является отбор единичных ядер на заключительном этапе Hi-C-эксперимента и проведение так называемой полногеномной амплификации — процесса, в котором с использованием особого фермента можно получить десятки тысяч копий ДНК из одного клеточного ядра.

«Это ключевой этап нашей технологии. Полногеномная амплификация позволяет напрямую работать с геномами индивидуальных клеток, секвенировать их и проводить любые другие манипуляции, в том числе исследовать трехмерную организацию хроматина в одной отдельно взятой клетке. Так называемые single-cell технологии, то есть исследования и манипуляции с единичными клетками, сейчас являются бурно развивающейся областью молекулярной биологии», — сказал Сергей Ульянов.

С помощью нового метода ученые смогли изолировать из мышиных зигот отдельно материнское ядро и отцовское и посмотреть, чем пространственная организация материнского генома отличается от отцовского.

«Мы провели анализ пространственной организации генома в зиготах мыши. Оказалось, что ядра, мужское и женское, которые сосуществуют в одной клетке, в зиготе, принципиально различаются по тому, как в них уложен геном. В ядре, сформировавшемся из ядра сперматозоида, активные участки генома в пространстве отделены от неактивных, а в ядре с материнским геномом этого не наблюдается. Во всех предыдущих исследованиях в клетках млекопитающих это разделение имело место, так что это очень неожиданный результат», — прокомментировал один из авторов статьи, Илья Флямер.

Таким образом, новый метод позволяет исследовать самые ранние стадии эмбриогенеза, сразу после оплодотворения.

«Поскольку зигота — это тотипотентная клетка, которая может дать начало любому типу клеток в организме, возможно, полученные результаты помогут понять природу тотипотентости и дадут возможность приблизиться к более полному перепрограммированию соматических клеток, чем при создании индуцированных плюрипотентных стволовых клеток» — сказал Илья Флямер.

Пространственная организация хроматина является важным регуляторным инструментом, который клетка использует для управления экспрессией генов. В последнее время в научной литературе появляется все больше сообщений о том, что нарушения нормальной упаковки ДНК в ядре связаны с рядом тяжелых заболеваний человека и в первую очередь с некоторыми раковыми опухолями. Технология Hi-C на единичных клетках в будущем позволит исследовать отдельные, в том числе крайне немногочисленные, субпопуляции раковых клеток в составе опухолей и, возможно, приблизит нас к понимаю механизмов возникновения злокачественных новообразований

Работа выполнена совместно с Институтом биологии гена РАН и коллегами из Австрии и США.