17
Календарь конференций
  • 15 – 19 апреля

    Ломоносовские чтения-2019. Секция экономических наук. Ежегодная научная конференция на тему «Экономические отношения в условиях цифровой трансформации»

  • 15 – 22 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Секция Механики

  • 15 – 25 апреля

    Ежегодная научная конференция "Ломоносовские чтения-2019. Секция Физики."

  • 15 – 25 апреля

    Ежегодная научная конференция "Ломоносовские чтения". Секция "Востоковедение и африканистика".

  • 16 – 25 апреля

    «Ломоносовские чтения» 2019 года. Секция «Международные отношения»

  • 23 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Научно-практическая конференция «Региональное измерение цифровой трансформации»

  • 1 февраля – 15 мая

    Универсиада «Ломоносов» по геологии

  • 7 февраля – 15 мая

    Универсиада «Ломоносов» по почвоведению и экологии

  • 16 – 18 мая

    17-я Международная конференция «Государственное управление: Россия в глобальной политике»

  • 23 – 25 октября

    Международная научно-практическая конференция «Предвузовская подготовка иностранных граждан в РФ: история и современность»

Все конференции
Конкурсы на замещение должностей научных и педагогических работников
Олимпиады школьников и универсиады в МГУ
Мероприятия для школьников и учителей
Единая поисковая система по зарубежным базам данных
«Университет без границ»
Программы дополни-
тельного образования
Гранты Президента РФ
31/03/18

Ученые доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде

Российские физики экспериментально доказали способность сильно расходящегося лазерного излучения самофокусироваться в воде. Этот эффект можно использовать для создания перестраиваемых высокоэффективных источников лазерного излучения высокой пиковой мощности, что может быть востребовано при лечении заболеваний глаз. Работа выполнена в рамках гранта Президентской программы исследовательских проектов, реализуемой Российским научным фондом (РНФ), и опубликована в журнале Physical Review A.

В рамках гранта РНФ ученые с физического факультета МГУ под руководством Федора Потемкина исследуют новые подходы к использованию лазерного излучения в медицинских и научных целях. Лазерное излучение может оказывать силовое воздействие на кристаллы, полупроводники, комбинированные среды, а также на такие биологические объекты, как, например, человеческий глаз.

Ученые надеются найти решение проблем, связанных с деструкцией стекловидного тела глаза – гелеподобного вещества между хрусталиком и сетчаткой. При этой патологии образующие стекловидное тело коллагеновые волокна, слипаясь, формируют непрозрачные конгломераты, приводящие к ухудшению зрения. До сих пор основным методом борьбы с ней является витрэктомия – полное удаление стекловидного тела и использование вместо него специальных заменителей, что чревато их отторжением и потерей зрения.

Альтернатива – воздействие на эти образования наносекундными лазерами с длиной волны 1,06 мкм (примерно в 50 раз меньше толщины человеческого волоса), на которую колбочки глаза, отвечающие за цветовое восприятие, не реагируют. «Холодный» лазер фокусируется вглубь глаза, нагревая строго определенное место, и все вредные конгломераты в буквальном смысле испаряются, превращаясь в пузырек воздуха. Проблема в том, что наносекундный лазер из-за высокой энергии импульсов создает большую зону повреждения. Именно поэтому ученые пытаются освоить менее инвазивные фемтосекундные лазеры для этих целей, энергия импульса в которых на несколько порядков меньше, а также разрабатывают различные методы диагностики для слежения за процессом в режиме реального времени. Если в наносекундном лазере энергия импульса составляет несколько десятков миллиджоулей, то в фемтосекундном лазере для эффективной работы необходимо создать энергии в микроджоули. Это в тысячу раз меньше, что сделает зону повреждения глаза гораздо меньше.

В своей последней работе ученые решили исследовать феномен филаментации, самофокусировки, сильно расходящегося лазерного пучка в воде — как в наиболее подходящем прототипе стекловидного тела глаза.

«Грубо говоря, при явлении филаментации поперечный размер пучка начинает меняться по определенному закону, хотя никакой фокусирующей оптики может и не быть, – пояснил Потемкин. – Благодаря этому излучение может распространяться на очень большие дистанции, практически не расходясь».

Обычно процессы филаментации ученые наблюдают при больших энергиях импульсов — порядка миллиджоулей в слабофокусированных пучках. Потемкин же с коллегами задался целью изучить возможность филаментации в остросфокусированных лазерных пучках при энергиях в микроджоули, поскольку до недавнего времени считалось, что это невозможно.

«Мы разрушили сразу два представления: что создать филаментацию в среде нельзя, используя сильно расходящиеся пучки, и тем более нельзя, используя сверхмалые энергии», – рассказал автор работы.

В эксперименте ученые светили сфокусированным лазерным пучком в прозрачный плоский сосуд с дистиллированной водой. Перемещая сосуд, они заставляли лазерный луч фокусироваться либо в 0,5 мм над поверхностью воды, а дальше расходиться в ее глубине, либо в ее толще, в 0,5 мм от ее поверхности. При помощи спектральной аппаратуры в обоих случаях изучался процесс филаментации лазерного пучка при его распространении в воде. При этом о наличии филаментации можно было судить по уширению частотного спектра прошедшего через сосуд излучения.

«Суперконтинуум – это обогащение спектра фемтосекундного излучения в центральной части пучка дополнительными частотами в процессе филаментации, когда у возникающего излучения спектр шире, чем у входного, – пояснил Потемкин. – Мы показали, что процесс филаментации возможно получить, используя остросфокусированное излучение, а работа в режиме сильнорасходящегося пучка наиболее перспективна. В этом случае мы имеем возможность управления процессом филаментации и спектром выходного излучения». Эксперимент показал, что управлять филаментацией можно, просто изменяя расстояние от точки фокуса до поверхности воды.

В экспериментальной работе принимали участие студенты из МГУ, а с теоретическим описанием зарегистрированного явления помогали коллеги из Франции.

В будущем можно ожидать использование полученного эффекта при создании коммерческих лазеров ультракороткой длительности, перестраиваемых по длине волны от видимого до среднего ИК-диапазона. Управление филаментацией лазерного излучения может найти применение в лабораторной спектроскопии, когда ученым требуется исследовать коллебательный спектр различных материалов, в том числе и белков, а подстраиваясь под резонансные частоты таких молекул, они могут исследовать их свойства во времени с фемтосекундной длительностью и пространстве с микронным разрешением. Наконец, возможность создавать локализованное воздействие на определенном расстоянии от границы среды с возможностью подбора оптимальных параметров излучения и диагностикой в режиме реального времени найдет применение в офтальмологии, для которой изначально и планировались эти исследования.