Размер шрифта:
  • А
  • А
  • А
Цветовая схема:
  • А
  • А
  • А
Календарь конференций
  • 29 ноября – 8 декабря

    XX Международная конференция «Государственное управление в новых геополитических и геоэкономических условиях»

  • 30 ноября – 2 декабря

    XVIII Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 30 ноября – 2 декабря

    VIII Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 30 ноября – 2 декабря

    XIII Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 30 ноября – 2 декабря

    XVIII Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 30 ноября – 2 декабря

    VIII Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 30 ноября – 2 декабря

    XIII Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 7 – 8 декабря

    Всероссийская научная конференция «Мехмат-90», посвященная 90-летию механико-математического факультета МГУ.

  • 29 ноября – 8 декабря

    XX Международная конференция «Государственное управление в новых геополитических и геоэкономических условиях»

  • 13 декабря

    3-й Всероссийский уголовно-правовой форум молодых ученых имени М.Н. Гернета

  • 15 декабря – 31 мая

    Универсиада «Ломоносов» по журналистике «Медиапроект»

  • 27 января – 4 февраля

    Зимняя школа по теоретической и математической физике Института теоретической и математической физики МГУ имени М.В. Ломоносова

  • 27 января – 4 февраля

    Зимняя школа по теоретической и математической физике Института теоретической и математической физики МГУ имени М.В. Ломоносова

  • 22 февраля

    Всероссийская (национальная) научно-практическая конференция «Человек – Семья – Общество – Государство – Бизнес: формирование образа будущего России»

  • 17 мая

    Научная конференция «Школе геофизиков МГУ - 80 лет. Перекличка поколений», посвященная 80-летию образования кафедры геофизики и 40-летию создания отделения геофизики на геологическом факультете МГУ

  • 15 декабря – 31 мая

    Универсиада «Ломоносов» по журналистике «Медиапроект»

Все конференции
Конкурсы на замещение должностей научных и педагогических работников
Проект «Вернадский»
Программы поддержки талантливой молодежи
«Университет без границ»
Олимпиады школьников и универсиады в МГУ
15/04/16

Ученые из МГУ разработали технологию выращивания кристаллов, на основе которых создан уникальный лазер для лечения глаз

Экспериментальный образец лазера на кристалле  (Er,Yb):GdAl3(BO3)4 Источник: Николай Леонюк
Экспериментальный образец лазера на кристалле (Er,Yb):GdAl3(BO3)4 Источник: Николай Леонюк

Группа ученых из Московского государственного университета имени М.В.Ломоносова и Белорусского национального технического университета создала уникальный лазер, который является компактным источником излучения с длинами волн, безопасными для человеческого глаза. Разработка может применяться в медицине, коммуникационных системах, а также в научных исследованиях. Работы ученых опубликованы в журналах Journal of Crystal Growth и Optics Letters.


«Совместно с белорусскими коллегами нами был разработан макет нового высокоэффективного безопасного для зрения лазера с полупроводниковой накачкой, который может использоваться в офтальмологии, коммуникационных системах и дальнометрии», — комментирует Николай Леонюк, профессор кафедры кристаллографии и кристаллохимии геологического факультета МГУ имени М.В.Ломоносова. Разработка такого лазера стала возможной благодаря тому, что коллектив ученых создал лабораторную технологию выращивания монокристаллов с заданными свойствами.

Излучение спектральной области 1500–1600 нм является условно безопасным для глаз и привлекает внимание для практического применения в медицине, дальнометрии (определения расстояния от наблюдателя до объекта), системах связи и оптической локации. Такая особенность обусловлена, во-первых,тем, что светопреломляющая система глаза (роговица и хрусталик) обладают достаточно высоким коэффициентом поглощения в этой спектральной области, благодаря чему лишь малая доля падающей энергии достигает чувствительной сетчатки. Во-вторых, излучение в области 1500–1600 нм обладает малыми потерями при прохождении через атмосферу.

На сегодняшний день среди источников излучения в указанном спектральном диапазоне наибольшее практическое распространение получили твердотельные лазеры на основе фосфатных стекол с ионами Er (эрбия) и Yb (иттербия). Такие стекла отличаются относительной простотой, компактностью и возможностью работы в режиме модулированной добротности, необходимом для получения импульсов короткой длительности. 

Основной недостаток, ограничивающий применение эрбиевых фосфатных стекол в системах с непрерывной диодной накачкой — низкая теплопроводность матрицы. Для снятия таких ограничений можно использовать кристаллические матрицы, содержащие ионы Er и Yb.

В данной работе для повышения эффективности генерации, энергии импульсов и частоты их следования и, как следствие, увеличения предельной дальности измерений расстояний, уменьшения погрешности и сокращения времени измерений в качестве активной среды использовались монокристаллы GdAl3(BO3)4, активированные ионами Er и Yb. Такой монокристалл характеризуется рекордным значением теплопроводности и высокой термохимической стабильностью (разрушение при температурах 1280°C, устойчив в агрессивных средах), а также механической прочностью).

«Созданный твердотельный лазер на основе кристаллов иттрий-гадолиниевого бората (Er,Yb:GdAl3(BO3)4) — это уникальный компактный источник излучения с различными длинами волн (1520, 1531, 1550, 1602 нм) в условно безопасном для органов зрения спектральном диапазоне, — говорит Николай Леонюк. — Надежная конструкция лазера наряду с высокими характеристиками дает возможность найти широкое применение источника в системах лазерной дальнометрии, метрологии, научных исследованиях, лазерно-искровой эмиссионной спектрометрии».

Применение лазерного диода в качестве источника накачки увеличивает срок службы лазера до 100 000 часов. Лазер легко использовать, для него не требуется дополнительного водяного охлаждения, кроме того, в процессе его работы отсутствуют вибрации.

В сравнении с широко используемыми волоконными фосфатными эрбиевыми лазерами, лазер на основе (Er,Yb):GdAl3(BO3)4 имеет линейную поляризацию излучения и более низкую стоимость.