19
Календарь конференций
  • 11 – 12 октября

    Научно-практическая конференция студентов, магистрантов и аспирантов II Молодежные Губеровские чтения «Юго-Восточная Азия: история и современность»

  • 26 – 27 октября

    VI Международная научно-практическая конференция «Инновационная экономика и менеджмент: методы и технологии»

  • 9 – 12 ноября

    4-я международная школа по квантовым технологиям

  • 17 – 18 ноября

    Всероссийская научная конференция с международным участием «Природная и антропогенная неоднородность почв и статистические методы ее изучения»

  • 19 – 20 ноября

    Юбилейная конференция кафедры прикладной институциональной экономики экономического факультета МГУ имени М.В. Ломоносова

  • 22 – 23 ноября

    X Овсянниковская международная эстетическая конференция

  • 23 – 26 ноября

    СОВМЕСТНАЯ XXII Международная научно-практическая конференция юридического факультета МГУ имени М.В.Ломоносова и XX Международная научно-практическая конференция "Кутафинские чтения" «Роль права в обеспечении благополучия человека»

  • 24 – 27 ноября

    XVI Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 3 декабря

    III Межвузовская студенческая конференция «Региональные варианты массовой культуры»

Все конференции
Филиал МГУ в г. Сарове

Единая поисковая система по зарубежным базам данных
Проект «Вернадский»
ЗАПИСАТЬСЯ НА ВАКЦИНАЦИЮ
Олимпиады школьников и универсиады в МГУ
Конкурсы на замещение должностей научных и педагогических работников
«Университет без границ»

Ученые МГУ исследовали новые светочувствительные жидкокристаллические полимеры

ЖК-текстура, наблюдаемая в поляризационно-оптический микроскоп. Источник: Алексей Бобровский
ЖК-текстура, наблюдаемая в поляризационно-оптический микроскоп. Источник: Алексей Бобровский

Сотрудники химического факультета и факультета фундаментальной физико-химической инженерии МГУ имени М.В.Ломоносова в сотрудничестве с иностранными коллегами синтезировали и исследовали новые светочувствительные жидкокристаллические (ЖК) полимеры. Работа проходила в рамках проекта, поддержанного грантом Российского научного фонда, а ее результаты были опубликованы в журнале Macromolecular Chemistry and Physics.

Ученые МГУ в сотрудничестве с чешскими коллегами из Института физики (Прага) синтезировали и исследовали новые ЖК-полимеры, сочетающие в себе оптические свойства жидких кристаллов и механические свойства полимеров. Такие полимеры могут быстро изменять ориентацию молекул под действием внешних полей и одновременно способны образовывать покрытия, пленки и детали сложных форм. Важное преимущество таких систем перед низкомолекулярными жидкими кристаллами заключается в том, что ЖК-полимеры при комнатной температуре существуют в стеклообразном состоянии, фиксирующем ориентацию молекул.

ЖК-полимеры состоят из молекул с высокой молекулярной массой, которые называют макромолекулами. Они имеют гребнеобразное строение: к основной гибкой полимерной цепи присоединены с помощью «развязки» из последовательно связанных молекул CH2 светочувствительные «жесткие» азобензольные фрагменты (C₆H₅N=NC₆H₅). Эти фрагменты стремятся упорядочиться и могут образовывать самые разные виды «упаковок» — жидкокристаллических фаз. Когда на такие полимеры падает свет, азобензольные группы перестраиваются, из-за чего оптические свойства полимеров изменяются. Такие полимеры называют фотохромными.

Особое внимание ученые уделили процессам фотоизомеризации и фотоориентации. Фотоизомеризация — это перегруппировка связей внутри молекулы полимера под действием света. Фотоориентация — это изменение ориентации жестких азобензольных (в данном случае) фрагментов под действием линейно-поляризованного света, в луче которого направление колебаний электрического поля строго определено. В ходе циклов фотоизомеризации под действием поляризованного света азобензольные фрагменты меняют свой угол. Это происходит до того момента, пока их ориентация не становится перпендикулярной плоскости поляризации падающего света, и фрагменты уже не способны поглощать свет. Процесс фотоориентации не только позволяет менять угол азобензольных фрагментов макромолекул, но и вызывает появление в пленках дихроизма (разной интенсивности поглощения поляризованного света в ортогональных направлениях) и двулучепреломления — расщепления луча света на две составляющие с ортогональной (пенпердикулярной) поляризацией, причем направление одной составляющей не изменяется, а второй луч преломляется.

«Основная идея нашей работы — исследовать, как химическая структура новых гребнеобразных фоточувствительных ЖК-полимеров влияет на их фазовое поведение и фотооптические свойства. Процессы фотоизомеризации и фотоориентации как раз позволяют управлять фазовым поведением и оптическими свойствами разработанных систем», — рассказал Алексей Бобровский, один из авторов статьи, профессор РАН, доктор химических наук, главный научный сотрудник кафедры высокомолекулярных соединений химического факультета МГУ имени М.В.Ломоносова.

Сначала ученые МГУ в сотрудничестве с коллегами из Института физики Академии наук Чешской Республики синтезировали мономеры, из которых в МГУ получили ЖК-полимеры. Фазовое поведение и температуры фазовых переходов полимеров авторы исследовали методами поляризационно-оптической микроскопии и дифференциально-сканирующей калориметрии. Детальная структура фаз была изучена методом рентгеноструктурного анализа на факультете фундаментальной физико-химической инженерии МГУ.

Самой важной частью работы, по словам авторов, было изучение фотооптических свойств, фотохромизма полученных полимеров. Этот этап делился на две части: облучение неполяризованным ультрафиолетовым (УФ) светом, в ходе которого происходила фотоизомеризация (перегруппировка связей внутри молекулы), и облучение поляризованным светом, который вызвал фотоориентацию.

Алексей Бобровский отмечает, что статья принадлежит к большому циклу работ, посвященных фотоиндуцированным процессам в фотохромных ЖК-полимерах. Это исключительно исследовательская работа: авторы изучили взаимосвязи между химической структурой и свойствами соединения.

«Фотоизомеризация и фотоориентация открывают большие перспективы для создания так называемых умных материалов. Они отзываются на различные внешние воздействия и могут быть использованы для хранения, записи и передачи информации в оптических устройствах различной сложности. Эти конкретные полимеры вряд ли будут использованы на практике, потому что они слишком дороги и синтез их непрост. С другой стороны, далеко не всегда можно предсказать, какие именно системы, когда и как найдут применение», — заключил ученый.