2
Календарь конференций
  • 30 ноября – 2 декабря

    VIII Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 30 ноября – 2 декабря

    XVIII Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 30 ноября – 2 декабря

    VIII Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 30 ноября – 2 декабря

    XVIII Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 13 декабря

    3-й Всероссийский уголовно-правовой форум молодых ученых имени М.Н. Гернета

  • 14 декабря

    Шестая международная научно-практическая конференция студентов и аспирантов «СМИ и журналистика: слово молодым»

  • 15 декабря – 31 мая

    Универсиада «Ломоносов» по журналистике «Медиапроект»

  • 15 октября – 16 декабря

    VII Международный конкурс на лучшую научную работу «Аrs Sacra Audit»

  • 27 января – 4 февраля

    Зимняя школа по теоретической и математической физике Института теоретической и математической физики МГУ имени М.В. Ломоносова

  • 27 января – 4 февраля

    Зимняя школа по теоретической и математической физике Института теоретической и математической физики МГУ имени М.В. Ломоносова

  • 22 февраля

    Всероссийская (национальная) научно-практическая конференция «Человек – Семья – Общество – Государство – Бизнес: формирование образа будущего России»

  • 27 февраля – 1 марта

    Международная научно-практическая конференция МГУ «Энциклопедия: вчера, сегодня, завтра»

  • 27 февраля – 1 марта

    Международная научно-практическая конференция МГУ «Энциклопедия: вчера, сегодня, завтра»

  • 17 мая

    Научная конференция «Школе геофизиков МГУ - 80 лет. Перекличка поколений», посвященная 80-летию образования кафедры геофизики и 40-летию создания отделения геофизики на геологическом факультете МГУ

  • 15 декабря – 31 мая

    Универсиада «Ломоносов» по журналистике «Медиапроект»

Все конференции
24/05/23

Ученые МГУ выяснили, как повлиять на активность хромосом

Сотрудники биологического факультета МГУ детально изучили динамику взаимодействия H2A-H2B димеров гистонового кора – белкового комплекса, на который наматывается ДНК в хромосомах. Исследование было выполнено при поддержке Минобрнауки России в рамках проекта «Наука и университеты», его результаты опубликованы в журнале Cells. 

Длина молекулы ДНК человека составляет примерно 170 см. Причем столь длинная молекула содержится в каждой клетке организма, которых у среднего человека около 30 триллионов. Чтобы геном был компактным, длинная молекула ДНК намотана на специальные белки, как нитка на систему катушек, и от того, каким именно образом она намотана, зависит работа генома. Например, гены, ДНК которых упакована с редким расположением катушек, будут считываться легче и чаще, чем гены с плотной упаковкой. Катушка, на которую наматывается ДНК, называется нуклеосомой. Она состоит из 8 молекул белков гистонов H2A, H2B, H3 и H4 – в составе по две молекулы каждого вида. 

Помимо обеспечения компактизации ДНК, нуклеосомы участвуют в регуляции работы генома. Важную роль в этом играют димеры H2A-H2B. Они стабилизируют общую структуру нуклеосомы и контролируют ее активность. Например, делают возможными разворачивание молекулы ДНК и её движение вдоль нуклеосомы. Если работа гистонового кора плохо контролируется, это может привести к развитию заболеваний, в частности, онкологических.

Несмотря на важность происходящих процессов, все еще неясно, как именно H2A-H2B димеры участвуют в работе нуклеосом. Команда исследователей кафедры биоинженерии биологического факультета МГУ решила изучить динамику этих процессов. Для этого ученые использовали метод полноатомного молекулярного моделирования, для которого понадобились вычислительные мощности суперкомпьютера МГУ «Ломоносов-2». Этот метод позволяет детально рассмотреть проходящие динамические процессы на субмолекулярных уровнях, а также лучше понять, как связаны между собой разные этапы таких взаимодействий. Для исследований использовали гистоны гладкой шпорцевой лягушки – классического модельного объекта в биологии. Учёные проводили моделирование двух типов систем: свободного димера гистонов H2A-H2B и полной нуклеосомной коровой частицы из 8 молекул гистонов и ДНК.

Результаты показали, что димеры в свободной форме имеют большую динамику, чем в составе нуклеосомы. Кроме того, исследователи обнаружили, что образование стабильных контактов между димером и ДНК приводит к изгибанию ДНК, а также смещению изгиба димера в сторону этих контактов. То есть, общая динамика сгибания димера зависит от того, как он взаимодействует с ДНК. Ученые также смогли проанализировать, что на такую динамику влияет и то, насколько изогнулась ДНК. 

«Хроматин – нуклеопротеид клеточного ядра, составляющий основу хромосом, является динамичной структурой и через изменение динамических свойств каркасных частей хроматина происходит регулирование его функций. Тонкие моды динамики гистонов уже были показаны в ряде исследований структуры нуклеосомы, однако их значение до сих пор не было раскрыто. В нашей работе была показана связь между динамикой гистонов и функционально-важной динамикой ДНК, а также выдвинуты гипотезы о механизме регулирования активности хроматина в результате изменения последовательности гистонов», – пояснила первый автор исследования, аспирант кафедры биоинженерии биологического факультета МГУ Анастасия Князева.