5
Календарь конференций
  • 26 – 27 мая

    «Уголовное право в системе межотраслевых связей: проблемы теории и правоприменения»

  • 24 января – 30 мая

    Универсиада «Ломоносов» по почвоведению и экологии 2022

  • 15 декабря – 31 мая

    Универсиада «Ломоносов» по журналистике «Медиапроект»

  • 15 января – 31 мая

    Универсиада Ломоносов по государственному управлению

  • 20 декабря – 31 мая

    Универсиада "Ломоносов" по Геологии 2021-2022 учебного года

  • 15 ноября – 31 мая

    Универсиада по лингвистике, регионоведению и культурологии

  • 18 – 21 сентября

    I Всероссийская конференция преподавателей кристаллографии

  • 23 – 25 ноября

    V Национальный конгресс по регенеративной медицине

  • 15 – 16 декабря

    Всероссийская конференция «Органические радикалы: фундаментальные и прикладные аспекты» (2022)

Все конференции
26/04/22

Ученые усовершенствовали метод получения биотоплива из растительных отходов

Ученые МГУ с коллегами предложили простой и экологичный способ переработки бионефти. С его помощью из растительного сырья, например из обычных щепок, можно получить высококачественное топливо. Предложенная технология позволяет задействовать воду, которая содержится в бионефти, в качестве источника водорода для облагораживания сырья и улучшения его свойств. Такой поход дает возможность перерабатывать бионефть, минуя дорогостоящую стадию отделения воды. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Applied Catalysis B: Environmental.

Бионефть на сегодняшний день рассматривается в качестве альтернативы ископаемому топливу, поскольку ее получают из возобновляемого растительного сырья, например сельскохозяйственных культур или отходов лесной, деревоперерабатывающей и целлюлозно-бумажной промышленности. Однако бионефть по сравнению с обычной нефтью содержит большое количество воды (до 30%), а также несет в себе в разы больше (до 60%) кислородсодержащих соединений, таких как альдегиды, кислоты, кетоны и фенолы. Наличие этих веществ обусловливает высокую кислотность бионефти, а значит, и коррозионную активность. Кислородсодержащие соединения делают бионефть нестабильной при хранении, повышают ее вязкость. Кроме того, высокое содержание кислорода отрицательно сказывается на теплотворной способности бионефти, а еще она плохо смешивается с другим углеводородным топливом.

Устранить недостатки бионефти можно путем очистки, направленной, главным образом, на удаление кислородсодержащих соединений, — гидродеоксигенацией. Такой процесс проводится под давлением водорода, который «забирает» из сырья кислород. Подобные реакции не могут идти самопроизвольно и требуют катализаторов — веществ, ускоряющих химические превращения. Так, для обработки бионефти лучше всего подходят сульфидные катализаторы, содержащие соединения переходных металлов — никеля, кобальта, вольфрама, молибдена. Они обладают высокой активностью и устойчивостью к действию кислородсодержащих соединений, однако для них губительно наличие воды, которая разрушает структуру катализатора, и он необратимо дезактивируется. Поэтому перед переработкой бионефти необходимо удалить из нее воду, а это в ряде случаев малоэффективно и сильно удорожает процесс.

Ученые МГУ имени М.В.Ломоносова совместно с коллегами из Российского государственного университета нефти и газа имени И.М. Губкина, Института нефтехимического синтеза имени А.В. Топчиева и Самарского государственного технического университета нашли выход из ситуации. Они предложили не отделять воду, а использовать ее в качестве источника водорода, необходимого для облагораживания бионефти. Благодаря этому процесс переработки становится очень экономичным, поскольку может быть осуществлен в одну стадию.

Поскольку бионефть представляет собой многокомпонентную сложную систему, ученые проводили исследования на модельном сырье. Им в эксперименте выступал гваякол — природное органическое вещество, большое количество которого содержится в древесных отходах, — в смеси с органическим растворителем и водой, что имитирует состав бионефти. В качестве предшественников активного компонента катализатора использовались нефтерастворимые соли молибдена и никеля, а для его перевода в сульфидную форму добавляли серу. Эксперименты проводились в герметичном реакторе периодического действия под давлением монооксида углерода (СО) при температуре 320–380℃ и интенсивном перемешивании. Весь процесс занимал от четырех до восьми часов. Под действием температур в присутствии серы происходила трансформация солей металлов с образованием катализатора, который представлял собой черный порошок и легко отделялся от жидких продуктов. Сам процесс облагораживания включал несколько реакций: взаимодействие монооксида углерода с водой (реакция водяного газа) с образованием водорода и, непосредственно, гидродеоксигенацию.

Ученые неоднократно повторили эксперимент, варьируя различные условия: состав катализатора, содержание серы, количество водорода в газовой смеси и воды в реакционной системе, а также температуру и давление. Оказалось, что наиболее эффективно очистка происходила при использовании никель-молибденового катализатора, когда содержание серы составляло около 1,5%. Это можно объяснить тем, что сера предотвращала окисление катализатора, и тем самым сохраняла его активность. Кроме того, оказалось, что источник водорода и давление СО в газовой смеси, которой заполнялся реактор, практически не влияли на степень очистки.

Неудивительно, что важным фактором оказалось количество воды, которая была в модельном сырье, поскольку именно она служила источником необходимого водорода. Так, оптимальное содержание воды составило 20–40%. При более низких значениях водорода не хватало для эффективного удаления кислородсодержащих соединений, а при более высоких вода снижала активность катализатора. Кроме того авторы определили, что наиболее быстро очистка проходила при самой высокой из рассмотренных температур — 380℃.

«Полученные нами данные позволяют предложить пути усовершенствования переработки бионефти, благодаря которой из растительного сырья можно быстро и дешево получить высококачественное биотопливо. Предложенный нами способ позволяет задействовать воду, которая содержится в бионефти, в качестве источника водорода для облагораживания сырья и улучшения его свойств. Такой поход дает возможность перерабатывать бионефть, минуя стадию отделения воды. Установленные нами закономерности и механизмы открывают возможности управления процессом с получением целевых продуктов. В дальнейшем мы планируем детально исследовать особенности превращения других кислородсодержащих молекул, как отдельно, так и в составе многокомпонентных смесей, что необходимо для понимания химизма процесса и его "адаптации" к реальному сырью», — рассказала руководитель проекта по гранту РНФ Анна Вутолкина, кандидат химических наук, старший научный сотрудник химического факультета МГУ.