Размер шрифта:
  • А
  • А
  • А
Цветовая схема:
  • А
  • А
  • А
Календарь конференций
  • 15 – 22 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Секция Механики

  • 14 января – 20 апреля

    Универсиада «Ломоносов» по международным отношениям

  • 23 апреля

    Российская научная конференция «Правда и ложь на экране»

  • 23 апреля

    Ежегодная научная конференция «Ломоносовские чтения». Научно-практическая конференция «Региональное измерение цифровой трансформации»

  • 25 апреля

    Ломоносовские чтения - 2019 Секция астрономии и геофизики

  • 25 апреля

    Научно-практический семинар «Иностранная рабочая сила в российской экономике: эффекты, риски и прогнозы»

  • 10 марта – 30 апреля

    Универсиада «Ломоносов» по государственному управлению

  • 7 февраля – 15 мая

    Универсиада «Ломоносов» по почвоведению и экологии

  • 16 – 19 мая

    IV Международная научная конференция "Язык, книга и традиционная культура позднего русского средневековья в науке, музейной и библиотечной работе"

  • 31 мая – 1 июня

    XXI международная конференция «Россия и Запад: диалог культур»

  • 31 мая – 1 июня

    XXI международная конференция «Россия и Запад: диалог культур»

Все конференции
Конкурсы на замещение должностей научных и педагогических работников
Единая поисковая система по зарубежным базам данных
Гранты Президента РФ
Олимпиады школьников и универсиады в МГУ
Программы дополни-
тельного образования

Учёные МГУ пересмотрели механизм образования артериальных тромбов

Микрофотография тромба, полученная с помощью сканирующего электронного микроскопа
Микрофотография тромба, полученная с помощью сканирующего электронного микроскопа

Международная команда исследователей под руководством научной группы из МГУ исследовала, как возникают артериальные тромбы, и пересмотрела механизм их образования. Результаты работы опубликованы в престижном научном журнале Arteriosclerosis, Thrombosis, and Vascular Biology.

Тромбы представляют собой небольшие сгустки крови, формирующиеся на стенках сосудов. Если тромб становится слишком большим и перекрывает больше 75% просвета сосуда, то ткани и органы, лежащие ниже по кровяному руслу могут испытывать существенный недостаток кислорода. В зависимости от того, какой сосуд будет перекрыт, последствия могут быть разными: от боли и отека конечности до инсульта. В частности, тромбы в артериях приводят к столь трагическим последствиям, как инфаркт миокарда.

При образовании артериального тромба ключевую роль играют тромбоциты — клетки, участвующие в свёртывании крови. Из повреждённой стенки сосуда начинают выделяться вещества, активирующие тромбоциты. Активированные тромбоциты прилипают к повреждённому месту и слипаются друг с другом, образуя пробку. Эта пробка в норме предназначена для перекрывания повреждения и препятствует вытеканию крови. То есть она должна образовываться в ране, а не в сосуде. Однако, если внутри сосуда на его стенке имеется проблема (например, атеросклеротическая бляшка), а собственно сквозной раны нет, то пробка растёт внутрь сосуда. Так развивается тромбоз.

Внутри тромбов учёные выделяют две популяции тромбоцитов: проагрегаторные и прокоагулянтные. Если функция первых хорошо изучена — они способствуют слипанию тромбоцитов и компактизации сгустка, — то роль прокоагулянтных до сих пор оставалась не до конца понятной. Эти клетки мертвые: при активации прокоагулянтные тромбоциты умирают и не способны ни агрегировать, ни сжиматься, а лишь ускоряют свертывание крови. Наблюдая за прокоагулянтными тромбоцитами в тромбах, старший научный сотрудник кафедры биофизики физфака МГУ Дмитрий Нечипуренко обнаружил удивительный феномен: эти клетки вылезали наружу из тромбов. Тогда международная команда исследователей под руководством профессора кафедры медицинской физики физического факультета МГУ Михаила Пантелеева решила разобраться с механизмом образования тромбов и проследить за ним в режиме реального времени.

«Мы показали, что тромбы непрерывно меняют свою структуру, и прокоагулянтные тромбоциты выползают из них наружу (а точнее выталкиваются мышечным сокращением проагрегаторных тромбоцитов), — рассказывает один из авторов исследования, профессор кафедры медицинской физики физического факультета МГУ Михаил Пантелеев. — В каком-то смысле, получается феерическая картина: мертвые клетки-зомби выкарабкиваются на поверхность тромба. Это ведет к тому, что поверхность тромба покрывается фибрином, который нарабатывается на поверхности прокоагулянтных зомби-тромбоцитов, и становится стабильной. В этой работе мы впервые увидели прокоагулянтные тромбоциты в тромбах в живом организме, поняли где они находятся и как они работают».

Чтобы выявить механизм образования тромбов, учёные проводили опыты на генномодифицированных мышах. Используя аппликацию хлорида железа или механически повреждая сосуды, исследователи запускали в сонной артерии и брюшной аорте процесс накопления тромбоцитов в месте повреждения. Затем с помощью интравитального флуоресцентного микроскопа в режиме реального времени наблюдали за поведением клеток, образующих тромб. Чтобы в деталях понять строение тромба, их извлекали из сосудов и исследовали на конфокальном микроскопе, позволяющем слой за слоем изучить структуру образований, а также на электронном микроскопе. На основе полученных данных физики МГУ построили компьютерную модель движения клеток в тромбе и выяснили, что их модель отличается от существующих в науке представлений о механизмах образования тромбов.

«На мой взгляд, эта работа имеет существенное значение. Это сильный пересмотр того, как устроен артериальный тромбоз вообще. Полученные результаты могут иметь значение для разработки методов диагностики и терапии сердечно-сосудистых заболеваний», — заключает Михаил Пантелеев.

В исследовании принимали участие сотрудники физического факультета МГУ, факультета фундаментальной медицины МГУ, НМИЦ ДГОИ им. Дмитрия Рогачева, Центра теоретических проблем физико-химической фармакологии РАН, МФТИ, Страсбургского университета (Франция), Пенсильванского университета (США).