16
Календарь конференций
  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

  • 1 – 30 ноября

    Внутривузовский этап в МГУ имени М.В. Ломоносова Всероссийского конкурса научно-исследовательских работ студентов и аспирантов "Наука будущего - наука молодых"

  • 10 – 27 ноября

    Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020»

  • 10 – 11 ноября

    V Международная научно-практическая конференция «Инновационная экономика и менеджмент: методы и технологии»

  • 23 – 26 ноября

    Всероссийская конференция и XII научная молодежная Школа с международным участием

  • 26 – 29 ноября

    XV Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 26 – 29 ноября

    X Международная конференция-конкурс «Инновационные информационно-педагогические технологии в системе ИТ-образования»

  • 17 – 18 декабря

    VII Международная научная конференция «Русская литература ХХ–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 1 сентября – 31 декабря

    Форум «Гуманитарные науки и вызовы современности»

  • 8 апреля – 31 декабря

    Ежегодный Фестиваль школьных средств массовой информации на факультете журналистики МГУ

Все конференции
Проект «Вернадский»
«Университет без границ»
Олимпиады школьников и универсиады в МГУ
Электронная трудовая книжка

Конкурсы на замещение должностей научных и педагогических работников
Единая поисковая система по зарубежным базам данных
Гранты Президента РФ
06/04/20

Учёные МГУ предложили новый способ создания перовскитных солнечных элементов

Ученые факультета наук о материалах МГУ предложили новый способ создания перовскитных солнечных элементов. Результаты были опубликованы в журнале ACS Applied Materials & Interfaces.

Сегодня кремниевые солнечные батареи достигли предельных значений их эффективности и минимизации стоимости производства. В связи с этим, на фоне общемирового запроса на разработку новых более дешёвых и эффективных альтернативных источников энергии, учёные всего мира ведут активный поиск принципиально новых материалов для солнечной энергетики. Гибридные органо-неорганические перовскиты являются одним из немногих уникальных материалов, которые в будущем могут помочь человечеству сделать солнечную энергию по-настоящему доступной. Солнечные элементы на их основе — так называемые перовскитные солнечные элементы — буквально за 10 лет с момента их изобретения обогнали поликристаллический кремний по КПД. При этом перовскитные солнечные элементы потенциально могут быть изготовлены из доступных материалов значительно более дешёвыми методами. 

Сейчас одной из задач перовскитной фотовольтаики на пути к коммерциализации является разработка новых методов для получения плёнок гибридных перовскитов большой площади. Ещё один шаг в этом направлении сделали молодые учёные из лаборатории новых материалов для солнечной энергетики факультета наук о материалах МГУ. Исследователи разработали новый подход для производства перовскитных солнечных элементов большой площади с помощью нанесения спиртовых растворов реакционных органических полигалогенидов на плёнки металлического свинца. 

В отличии от классических методов получения гибридных перовскитов, в данном подходе не используются токсичные растворы солей свинца в органических растворителях, а кристаллизация высококачественных плёнок значительно ускоряется и упрощается за счёт использования уникального прекурсора — растворов реакционных полигалогенидов, которые были открыты в 2016 году в лаборатории новых материалов для солнечной энергетики ФНМ МГУ. 

«В ходе исследований реакционной способности растворов органических полигалогенидов нами были разработаны жидкие реакционные чернила, нанесение которых на металлический свинец позволяет контролируемо получать высококачественные плёнки гибридных перовскитов в широком диапазоне составов. С использованием данного масштабируемого подхода нами были изготовлены планарные перовскитные солнечные элементы с КПД более 17%, и в дальнейшем мы планируем развивать данную технологию для получения высокоэффективных перовскитных солнечных модулей увеличенной площади, что в свою очередь позволит расширить перспективы их дальнейшей коммерциализации», — рассказал руководитель исследования Алексей Тарасов, кандидат химических наук, заведующий лабораторией новых материалов для солнечной энергетики факультета наук о материалах МГУ и старший научный сотрудник химического факультета МГУ.

Исследование выполнено при финансовой поддержке Российского научного фонда (РНФ) и En+ group при участии коллег из Национального института передовых промышленных наук и технологий (AIST, Япония).