16
Календарь конференций
  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 23 – 28 августа

    Международная конференция «Теоретико-множественная топология и топологическая алгебра», посвященная 80-летию профессора Александра Владимировича Архангельского

  • 27 – 31 августа

    7th International Conference on Mathematical Modeling in Physical Sciences

  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 19 – 23 сентября

    I Всероссийская научная конференция школьников, студентов и молодых ученых «Морские исследования и рациональное природопользование»

  • 25 сентября

    Ежегодные «Филологические чтения памяти Дмитрия Николаевича Воскресенского»

  • 27 – 29 сентября

    Международная научно-практическая конференция, посвященная вопросам устного перевода в области науки, общественно-политической и экономической деятельности, организованной при участии компаний-работодателей, средств массовой информации и других организаци

  • 28 ноября

    Научно-методическая конференция "Рожковские чтения"

  • 3 – 6 декабря

    Всероссийская научная конференция и XI молодежная школа «Возобновляемые источники энергии»

  • 13 – 14 декабря

    Международная конференция “Деятельностный подход к образованию в современном информационном обществе”

  • 16 февраля – 16 декабря

    Всероссийский конкурс - Олимпиада "Кристальное дерево знаний 2018"

Все конференции
Программы поддержки талантливой молодежи
Гранты Президента РФ
«Университет без границ»
Единая поисковая система по зарубежным базам данных
Конкурсы на замещение должностей научных и педагогических работников
Олимпиады школьников и универсиады в МГУ
Мероприятия для школьников и учителей
27/02/18

Учёные МГУ придумали, как различать пучки спутанных фотонов

Фотография картины рассеяния. Источник: Павел Прудковский
Фотография картины рассеяния. Источник: Павел Прудковский

Учёные физического факультета МГУ имени М.В.Ломоносова разработали метод, позволяющий создавать два пучка спутанных фотонов и измерять задержку между ними. В будущем результаты могут быть использованы в высокоточных измерениях, исследовании материалов и в информационных технологиях. Статья опубликована в журнале Optics Letters.

В 1966 году профессор кафедры квантовой электроники физического факультета МГУ Давид Николаевич Клышко открыл эффект параметрического рассеяния света, за что физик и его коллеги позднее были удостоены Государственной премии СССР. Это открытие стало началом квантовой оптики, популярного сегодня раздела физики, изучающего квантовые свойства света. Эффект довольно прост: приходящий в кристалл фотон распадается на два других фотона, сумма частот которых при этом равна первоначальной. Важно, что этот процесс может наблюдаться только в нелинейных кристаллах, в которых частота фотонов может изменяться в процессе рассеяния.

Эффект нашел применение во множестве областей: исследовании самих кристаллов, измерении эффективности фотодетекторов и, собственно, в квантовой оптике, где были продемонстрированы успехи в области квантовой криптографии, квантовых вычислений, а также в красивом эффекте квантовой телепортации. Дело в том, что рождающиеся фотоны оказываются в спутанном состоянии: при измерении поляризации одного фотона, квантовое состояние поляризации второго изменится. Измерение свойств одного фотона «чувствуется» другим моментально, правда, информацию таким способом передавать невозможно.

В недавнем эксперименте учёные МГУ под руководством ведущего научного сотрудника кафедры квантовой электроники физического факультета МГУ Марии Чеховой попробовали генерировать не отдельные пары спутанных фотонов, а большое их количество — в форме двух мощных пучков из их пар.

«В таком случае у нас коррелируют между собой не отдельные фотоны, а целые пучки. И возникает вопрос: с какой точностью? — поясняет Павел Прудковский, один из соавторов работы. — И если мы задержим один пучок, то вопрос сведётся к тому, насколько надо его задержать, чтобы мы могли заметить это рассогласование».

Для ответа на этот вопрос учёным предстояло заставить фотоны разных частот не разлетаться под разными углами из кристалла, а формировать два пучка света и лететь вместе, параллельно друг другу. Чтобы получить их, кристалл ниобата лития, который обычно используется в таких экспериментах, пришлось выращивать с определённой структурой: наводить в нём дополнительную апериодическую, заранее рассчитанную решётку доменов.

В ходе эксперимента учёные заставили один из двух спутанных пучков фотонов немного задержаться, проходя дополнительный путь, после чего оба пучка попали во второй кристалл — обычный ниобат лития. «В этом кристалле уже происходит сложение частот фотонов, и если пучки приходят синхронно, то сложение происходит эффективнее, чем в других случаях, — пояснил Прудковский. — В результате мы получаем узкий пик в сигнале суммарной частоты. И ширина этого узкого пика — 90 фемтосекунд (10-15 с) — и есть главное достижение».

Таким образом, учёным удалось экспериментально зарегистрировать почти минимально возможный сдвиг между пучками-близнецами спутанных фотонов, который возможно зафиксировать при помощи приборов. По словам учёных, ещё уменьшить эту величину в дальнейшем возможно, однако для этого необходимо усложнить схему эксперимента. «Пока 90 фемтосекунд — это рекордная величина, но она может быть меньше, и мы знаем, что для этого необходимо сделать», — пояснил Прудковский. По его словам, поскольку период волны лазерного излучения составляет единицы фемтосекунд, есть возможность уменьшения длины этой задержки и доведения её до порядка десятка фемтосекунд.

Результаты исследования пригодятся в разработке зашифрованных каналов связи, устойчивых к вмешательству и «прослушке». При попытке перехватить пучок спутанных фотонов злоумышленнику так или иначе придется его задержать, однако это вмешательство не останется незамеченным. Помимо этого, регистрация задержки двух квантово-запутанных пучков может найти применение в определении очень слабых, едва уловимых примесей в веществах.