4
Календарь конференций
  • 1 февраля – 1 сентября

    Поступление в 10 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 23 – 24 июня

    Международная научно-практическая конференция Космическая психология: методология и практика психологического сопровождения освоения человеком космического пространства

  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 1 февраля – 1 сентября

    Поступление в 10 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 10 – 12 сентября

    11-я международная конференция по безопасности информации и сетей -- 11th International Conference on Security of Information and Networks

  • 25 сентября

    Ежегодные «Филологические чтения памяти Дмитрия Николаевича Воскресенского»

  • 16 – 19 октября

    Всероссийская научная конференция «Национальная картографическая конференция 2018»

  • 22 – 27 октября

    IX Московская международная научная конференция по исследованию операций «ORM2018-Germeyer100»

  • 21 ноября

    Программа по перезагрузке научной фантастики в литературе и медиа "Будущее время"

  • 13 – 14 декабря

    Международная конференция “Деятельностный подход к образованию в современном информационном обществе”

  • 16 февраля – 16 декабря

    Всероссийский конкурс - Олимпиада "Кристальное дерево знаний 2018"

Все конференции
Программы поддержки талантливой молодежи
Конкурсы на замещение должностей научных и педагогических работников
Олимпиады школьников и универсиады в МГУ
Гранты Президента РФ
Мероприятия для школьников и учителей
Единая поисковая система по зарубежным базам данных
Программы дополни-
тельного образования
06/03/18

Учёные создали многофункциональные белково-полимерные плёнки

Комплекс дендримера с ферментом лизоцимом. Молекула дендримера жёлтая. Поверхность молекулы белка окрашена в соответствии с химическими свойствами аминокислотных остатков (красный – положительно-заряженные, синий – отрицательно-заряженные, зелёный – поляр
Комплекс дендримера с ферментом лизоцимом. Молекула дендримера жёлтая. Поверхность молекулы белка окрашена в соответствии с химическими свойствами аминокислотных остатков (красный – положительно-заряженные, синий – отрицательно-заряженные, зелёный – поляр

Сотрудники МГУ имени М.В.Ломоносова совместно с российскими и иностранными коллегами обнаружили, что при смешении древообразных полимеров дендримеров и белков самопроизвольно образуются многослойные плёнки. Они формируются просто и сохраняют активность белков-ферментов, это определяет их потенциал в качестве материала для создания биосенсоров и медицинских изделий. Результаты работы опубликованы в журнале Polymer.

В наши дни известно огромное количество полимеров различного строения, состава и свойств. Одним из самых интересных примеров являются дендримеры — древовидные макромолекулы. Устроены они следующим образом: к центральному ядру присоединены три группировки, от каждой из которых отходит ветвь ещё с двумя ветками и так далее. Такая структура достигается в результате многоступенчатого синтеза.

Количеством точек ветвления определяется номер генерации дендримера: у первой генерации каждая ветвь имеет одну точку, у второй — две, у третьей — три и так далее. Чем дальше, тем более плотной и сферической становится структура, а её физико-химические свойства определяют функциональные группировки внешнего слоя. Дендримеры способны образовывать полости, в которые можно упаковать молекулы, — это свойство стало поводом для активного изучения этих веществ. Учёные МГУ, однако, нашли дендримерам совершенно иное применение.

«Мы обнаружили, что при смешении белков с дендримерами четвёртой генерации происходит самопроизвольное образование многослойных наноплёнок толщиной порядка 200-700 нм. Они могут покрывать стеклянные или пластиковые поверхности, а также формироваться на границе раздела жидкость — воздух», — рассказывает Владимир Муронец, профессор факультета биоинженерии и биоинформатики МГУ, заведующий отделом биохимии животной клетки Научно-исследовательского института физико-химической биологии имени А.Н. Белозерского МГУ.

Учёные провели эксперименты по включению в состав наноплёнок различных ферментов: лизоцима, разрушающего клеточные стенки бактерий, и нескольких видов протеиназ, вызывающих расщепление белков. Экспериментально удалось выяснить, что эти белки в составе наноплёнки способны сохранять активность около двух недель. Сама же двухкомпонентная система устойчива к действию детергентов (моющих средств), к изменениям кислотности среды, да и в целом стабильна при хранении. Впрочем, основное преимущество изготовленных плёнок состоит в простоте их формирования за счёт самосборки.

«Мы считаем, что белково-дендримерные плёнки являются перспективным материалом для создания биосенсоров, а также могут быть использованы в медицине в качестве биоактивных перевязочных материалов», — заключает Владимир Муронец.

Работа выполнена совместно с сотрудниками Института элементоорганических соединений имени А.Н. Несмеянова РАН, Института органической химии имени Н.Д. Зелинского РАН, Первого Московского государственного медицинского университета имени И.М. Сеченова, а также из французского Национального института сельскохозяйственных исследований.