9
Календарь конференций
  • 15 декабря – 14 апреля

    Универсиада «Ломоносов» по фундаментальной физико-химической инженерии

  • 17 – 18 декабря

    Международная научно-практическая конференция «Личность в эпоху перемен: mobilis in mobili»

  • 18 – 19 декабря

    VI Международная научная конференция «Русская литература XX–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 15 января – 24 апреля

    Универсиада «Ломоносов» по социологии и менеджменту общественных процессов 2019

  • 18 – 19 февраля

    XIII Международная научная конференция «Сорокинские чтения» «Социальная стратификация в цифровую эпоху: К 130-летию со дня рождения Питирима Сорокина»

  • 1 октября – 7 апреля

    Универсиада «Ломоносов» по менеджменту и международному бизнесу

  • 8 – 12 апреля

    Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2019»

  • 15 декабря – 14 апреля

    Универсиада «Ломоносов» по фундаментальной физико-химической инженерии

  • 15 января – 24 апреля

    Универсиада «Ломоносов» по социологии и менеджменту общественных процессов 2019

  • 13 – 15 мая

    международная научно-техническая конференция «Методы фотограмметрии и компьютерного зрения для видеонаблюдения, биометрии и медицинских приложений»

  • 16 – 19 мая

    IV Международной научной конференции «Язык, книга и традиционная культура позднего русского средневековья в науке, музейной и библиотечной работе»

  • 2 – 5 июля

    ХVI Европейский психологический конгресс

Все конференции
15/03/18

Физик из МГУ разработал мощный лазер для генерации рентгеновского излучения

Эволюция мощности гармоник в многокаскадном ЛСЭ с двухчастотным группирователем, затравочным эксимерным F2 лазером на длине волны 157 нм и умножителями гармоник; начальный разброс энергии электронов σe=0.0001. Основной тон, n=1 — красно–оранжевые линии, г
Эволюция мощности гармоник в многокаскадном ЛСЭ с двухчастотным группирователем, затравочным эксимерным F2 лазером на длине волны 157 нм и умножителями гармоник; начальный разброс энергии электронов σe=0.0001. Основной тон, n=1 — красно–оранжевые линии, г

Сотрудник физического факультета МГУ имени М.В.Ломоносова исследовал процесс генерации ондуляторного излучения и на основе полученных данных разработал мощный лазер рентгеновского излучения. Результаты работы были опубликованы в журналах Laser and Particle Beams, Europhysics Letters, Journal of Applied Physics и в Journal of Physics D — Applied Physics.

Ондуляторное излучение — это электромагнитное излучение, которое возникает при ускорении электрона в пространственно-периодическом магнитном поле. Это значит, что магнитное поле появляется в пространстве через равные промежутки — периоды.

Ондуляторное излучение может достигать частот рентгеновского диапазона, но оно не когерентно — волны излучения непериодичны и несогласованны между собой. Источники когерентного излучения — лазеры, которые обычно работают на длинах волн более 200 нанометров. Для генерации более коротковолнового когерентного излучения трудно найти подходящие материалы, поэтому для исследования физических, химических и биологических процессов на масштабе нанометра используют лазеры на свободных электронах (ЛСЭ). В этих устройствах излучение генерируется с помощью электронного пучка, движущегося в ондуляторе (генераторе ондуляторного излучения). Для стабилизации фазы и получения хорошей временной когерентности излучения в ЛСЭ ученые используют затравочное когерентное излучение малой мощности.

Используя гармоники — электромагнитные волны удвоенной частоты — ондуляторного излучения, можно получить рентгеновское излучение в ЛСЭ с электронным пучком относительно невысоких энергий и низкой частотой затравочного лазера.

«Мы провели аналитическое исследование генерации гармоник в ондуляторах и показали, что ондуляторы с двоякопериодическим магнитным полем позволяют усилить излучение высших гармоник ондуляторного излучения по сравнению с обычными ондуляторами. Поэтому такие ондуляторы могут эффективно использоваться в каскадных ЛСЭ с генерацией высших гармоник, где в первом каскаде ЛСЭ происходит группировка электронов на длине волны излучения гармоник, а в последующих каскадах — усиление и излучение этих гармоник», — рассказал автор работ Константин Жуковский, доктор физико-математических наук, ведущий научный сотрудник кафедры теоретической физики отдела экспериментальной и теоретической физики физического факультета МГУ.

С помощью разработанной аналитической модели ЛСЭ ученый предложил и исследовал каскадные ЛСЭ для генерации рентгеновского излучения. Исследование показало, что можно получить ~100 мегаватт лазерного рентгеновского излучения на длине волны в один нанометр.

«Это открывает возможности по исследованию физических, химических и биологических процессов на наномасштабе с компактными ЛСЭ значительно меньших размеров и стоимости, чем того требуют гигантские километровые установки типа Европейского рентгеновского ЛСЭ (European XFEL)», — заключил ученый.