13
Календарь конференций
  • 10 – 12 октября

    VIII Международный конгресс по когнитивной лингвистике «Cognitio и communicatio в современном глобальном мире»

  • 11 октября

    Вторая ежегодная научная конференция консорциума журналов экономического факультета МГУ имени М.В. Ломоносова

  • 22 – 27 октября

    IX Московская международная научная конференция по исследованию операций «ORM2018-Germeyer100»

  • 21 – 23 ноября

    IX Международная научная конференция «Иберо-романистика в современном мире: научная парадигма и актуальные задачи»

  • 22 – 25 ноября

    III Международная научная конференция «Конвергентные когнитивно-информационные технологии»

  • 22 – 25 ноября

    XIII Международная научно-практическая конференция «Современные информационные технологии и ИТ-образование»

  • 27 – 30 ноября

    Совместная Международная научно-практическая конференция «Конституция Российской Федерации и современный правопорядок»

  • 4 – 8 декабря

    VII Всероссийская научная конференция с международным участием «Гуминовые вещества в биосфере» посвященная 90-летию со дня рождения Дмитрия Сергеевича Орлова и III международная молодежная научная школа «Методы оценки биологической активности гуминовых пр

  • 6 – 7 декабря

    Всероссийский съезд преподавателей и учителей математики

  • 13 – 14 декабря

    Международная конференция “Деятельностный подход к образованию в цифровом обществе”

Все конференции
15/03/18

Физик из МГУ разработал мощный лазер для генерации рентгеновского излучения

Эволюция мощности гармоник в многокаскадном ЛСЭ с двухчастотным группирователем, затравочным эксимерным F2 лазером на длине волны 157 нм и умножителями гармоник; начальный разброс энергии электронов σe=0.0001. Основной тон, n=1 — красно–оранжевые линии, г
Эволюция мощности гармоник в многокаскадном ЛСЭ с двухчастотным группирователем, затравочным эксимерным F2 лазером на длине волны 157 нм и умножителями гармоник; начальный разброс энергии электронов σe=0.0001. Основной тон, n=1 — красно–оранжевые линии, г

Сотрудник физического факультета МГУ имени М.В.Ломоносова исследовал процесс генерации ондуляторного излучения и на основе полученных данных разработал мощный лазер рентгеновского излучения. Результаты работы были опубликованы в журналах Laser and Particle Beams, Europhysics Letters, Journal of Applied Physics и в Journal of Physics D — Applied Physics.

Ондуляторное излучение — это электромагнитное излучение, которое возникает при ускорении электрона в пространственно-периодическом магнитном поле. Это значит, что магнитное поле появляется в пространстве через равные промежутки — периоды.

Ондуляторное излучение может достигать частот рентгеновского диапазона, но оно не когерентно — волны излучения непериодичны и несогласованны между собой. Источники когерентного излучения — лазеры, которые обычно работают на длинах волн более 200 нанометров. Для генерации более коротковолнового когерентного излучения трудно найти подходящие материалы, поэтому для исследования физических, химических и биологических процессов на масштабе нанометра используют лазеры на свободных электронах (ЛСЭ). В этих устройствах излучение генерируется с помощью электронного пучка, движущегося в ондуляторе (генераторе ондуляторного излучения). Для стабилизации фазы и получения хорошей временной когерентности излучения в ЛСЭ ученые используют затравочное когерентное излучение малой мощности.

Используя гармоники — электромагнитные волны удвоенной частоты — ондуляторного излучения, можно получить рентгеновское излучение в ЛСЭ с электронным пучком относительно невысоких энергий и низкой частотой затравочного лазера.

«Мы провели аналитическое исследование генерации гармоник в ондуляторах и показали, что ондуляторы с двоякопериодическим магнитным полем позволяют усилить излучение высших гармоник ондуляторного излучения по сравнению с обычными ондуляторами. Поэтому такие ондуляторы могут эффективно использоваться в каскадных ЛСЭ с генерацией высших гармоник, где в первом каскаде ЛСЭ происходит группировка электронов на длине волны излучения гармоник, а в последующих каскадах — усиление и излучение этих гармоник», — рассказал автор работ Константин Жуковский, доктор физико-математических наук, ведущий научный сотрудник кафедры теоретической физики отдела экспериментальной и теоретической физики физического факультета МГУ.

С помощью разработанной аналитической модели ЛСЭ ученый предложил и исследовал каскадные ЛСЭ для генерации рентгеновского излучения. Исследование показало, что можно получить ~100 мегаватт лазерного рентгеновского излучения на длине волны в один нанометр.

«Это открывает возможности по исследованию физических, химических и биологических процессов на наномасштабе с компактными ЛСЭ значительно меньших размеров и стоимости, чем того требуют гигантские километровые установки типа Европейского рентгеновского ЛСЭ (European XFEL)», — заключил ученый.