12
Календарь конференций
  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 23 – 28 августа

    Международная конференция «Теоретико-множественная топология и топологическая алгебра», посвященная 80-летию профессора Александра Владимировича Архангельского

  • 1 марта – 1 сентября

    Поступление в 8 класс. 2018/19 учебный год. Университетская гимназия (школа-интернат) МГУ имени М.В. Ломоносова.

  • 10 – 12 сентября

    11-я международная конференция по безопасности информации и сетей -- 11th International Conference on Security of Information and Networks

  • 25 сентября

    Ежегодные «Филологические чтения памяти Дмитрия Николаевича Воскресенского»

  • 10 – 12 октября

    VIII Международный конгресс по когнитивной лингвистике «Cognitio и communicatio в современном глобальном мире»

  • 11 октября

    Вторая ежегодная научная конференция консорциума журналов экономического факультета МГУ имени М.В. Ломоносова

  • 15 – 17 ноября

    IV Международный симпозиум «Традиционная культура в современном мире. История еды и традиции питания народов мира»

  • 21 ноября

    Программа по перезагрузке научной фантастики в литературе и медиа "Будущее время"

  • 3 – 6 декабря

    Всероссийская научная конференция и XI молодежная школа «Возобновляемые источники энергии»

  • 16 февраля – 16 декабря

    Всероссийский конкурс - Олимпиада "Кристальное дерево знаний 2018"

Все конференции
«Университет без границ»
Конкурсы на замещение должностей научных и педагогических работников
Программы поддержки талантливой молодежи
Мероприятия для школьников и учителей
Программы дополни-
тельного образования
Олимпиады школьников и универсиады в МГУ
Гранты Президента РФ
08/05/18

Физики из МГУ создали новый метод синтеза наночастиц для аккумуляторов

Сотрудники физического факультета МГУ имени М.В.Ломоносова разработали новый метод синтеза наночастиц оксидов марганца. Эти частицы можно использовать для топливных элементов и аккумуляторов. Результаты исследований были опубликованы в журнале Journal of Materials Science.

Марганец — это металл, который может проявлять и разную валентность, и образует несколько оксидов: MnO, Mn2O3, MnO2, MnO3 и Mn2O7. Наночастицы этих оксидов имеют достаточно широкий спектр приложений, при этом одно из самых распространенных и перспективных направлений — это их использование в качестве катализатора для реакции восстановления кислорода в щелочной среде. Реакции восстановления кислорода используются в электрохимических устройствах для преобразования и хранения энергии, поэтому оксиды марганца входят в состав электродов щелочных топливных элементов и металл-воздушных батареек.

Каталитическая активность наночастиц зависит от их размеров и строения, поэтому перед учеными стояла задача получить высокодисперсные наночастицы малых размеров. В ходе исследования физики разработали новый метод синтеза наночастиц оксидов марганца в среде сверхкритического диоксида углерода — среде, которая способна заменить многие экологически небезопасные растворители.

«Предложенный нами метод синтеза наночастиц оксидов марганца основан на термическом разложении металлоорганического вещества, который растворен в сверхкритическом диоксиде углерода в присутствии окислителя», — рассказал один из авторов статьи Вадим Зефиров, аспирант кафедры физики полимеров и кристаллов отделения физики твердого тела физического факультета МГУ.

Ученые составили электрохимическую характеристику полученных наночастиц, которая показала значительную каталитическую активность в реакции восстановления кислорода в щелочной среде. Авторы отмечают, что характеристики полученных материалов не являются уникальными, а соответствуют довольно высоким результатам ряда материалов, которые получены другими методами.

«Предложенный и реализованный метод открывает довольно широкий простор для научного творчества. С его помощью можно провести синтез других оксидов металлов, получение которых иными методами, возможно, будет сложнее. Кроме того, наш научный коллектив продолжает разработку этого метода, чтобы повысить характеристики получаемых материалов с целью дальнейшего их тестирования в реальных электрохимических источниках тока», — заключил ученый.

Работа проходила в сотрудничестве с учеными из Института элементоорганических соединений имени А.Н. Несмеянова РАН.

Рассказать об открытии можно, заполнив следующую форму.