15
Календарь конференций
  • 7 декабря – 13 марта

    Универсиада "Ломоносов" по микро- и макроэкономике

  • 11 декабря

    X международная научно-практическая конференцию НАММИ «Актуальные проблемы медиаисследований – 2020»

  • 11 декабря

    Конкурс медиаисследований Национальной ассоциации исследователей массмедиа - 2020

  • 17 – 18 декабря

    VII Международная научная конференция «Русская литература ХХ–XXI веков как единый процесс (проблемы теории и методологии изучения)»

  • 18 декабря

    Международная научно-практическая конференция «Финансово-экономическая реальность: вызовы и возможности»

  • 18 декабря

    Научный круглый стол «Влияние информационных сил на формирование мировых элит (XIX –XXI вв.)»

  • 20 декабря – 31 мая

    Универсиада "Ломоносов" по политологии в 2020-2021 учебном году

  • 1 сентября – 31 декабря

    Форум «Гуманитарные науки и вызовы современности»

  • 11 января – 31 мая

    Универсиада "Ломоносов" по международным отношениям 2020/2021 учебного года

  • 7 декабря – 13 марта

    Универсиада "Ломоносов" по микро- и макроэкономике

  • 24 марта

    Международная онлайн-конференция «Острожская Библия и развитие библейской традиции у славян»

  • 11 января – 31 мая

    Универсиада "Ломоносов" по международным отношениям 2020/2021 учебного года

  • 20 декабря – 31 мая

    Универсиада "Ломоносов" по политологии в 2020-2021 учебном году

Все конференции
16/11/20

Учёный МГУ о работе над созданием оптических чипов

Сегодня специалисты все чаще используют устройства на основе микроскопических лазеров и оптических чипов. Они нужны для создания лидаров, разработки новых биосенсоров, а в перспективе станут неотъемлемой составляющей новых оптических компьютеров, которые будут передавать и обрабатывать информацию не с помощью движения электронов, а с помощью частиц света ― фотонов. Оптические чипы работают, оперируя фотонами света вместо традиционных электронов. Сегодня чипы применяются в структуре суперкомпьютеров, где требуется мгновенная передача очень больших объемов информации. Одно из преимуществ оптической технологии перед электронной заключается в том, что первую можно использовать на очень больших расстояниях, а устройства, работающие со светом, сами по себе очень маленькие и потребляют минимум электроэнергии.

О своей разработке рассказал научный сотрудник физического факультета МГУ, победитель программы «УМНИК — Цифровой прорыв» Фонда содействия инновациям 2019 года Грант Авосопянц: «В настоящее время довольно перспективной областью исследований являются линейно-оптические вычисления, которые выполняются на специальном устройстве — оптическом чипе. Оптический чип — это такой универсальный вычислитель, способный работать как в классическом, так и в квантовом режимах». Создание таких программируемых оптических устройств, безусловно, является актуальной задачей, но не менее важно уметь определять преобразование, которое выполняет чип. Это преобразование описывается в общем случае некоторой комплексной передаточной матрицей, параметры которой необходимо восстановить. «Проанализировав научную литературу и предложенные интерференционные методы томографии оптических чипов, я учел их слабые стороны. В частности, работа с одиночными фотонами (квантовый режим) — их приготовление и измерение — занимают довольно много времени, к тому же для этого требуется дорогое оборудование», — вспомнил о том, как начиналась работа над проектом, молодой учёный.

Существует и ещё одна немаловажная проблема: из-за случайного отклонения входных и выходных фаз на чипе сильно уменьшается точность восстановления передаточной матрицы, а сам способ подвержен влиянию шумов детектора. «На момент подачи заявки наша научная группа на базе Центра квантовых технологий МГУ уже несколько лет работала над приготовлением, измерением и томографией различных модификаций тепловых состояний света. А тепловые состояния не зависят от флуктуаций фаз на входах и выходах чипа, к тому же можно работать с чипом в классическом режиме. В процессе исследований у нас родилась идея определения величин передаточной матрицы чипа с использованием тепловых состояний света», — рассказал Грант Авосопянц. Уже прошел почти год с тех пор, как проект выиграл грант по программе «УМНИК — Цифровой прорыв». За это время командой были получены довольно неплохие результаты: разработан подход по характеризации чипов с использованием тепловых состояний, при этом в ходе численного моделирования была создана первая версия программно-аппаратного комплекса, позволяющая всесторонне анализировать линейно-оптические интегральные схемы. В следующем году ученые планируют собрать экспериментальную установку и уже «в боевых условиях» опробовать разработанный метод.